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Abstract. We propose a compact and explicit expression for the solutions of the complex Toda
chains related to the classical series of simple Lie algebrasg. The solutions are parametrized by
a minimal set of scattering data for the corresponding Lax matrix. They are expressed as sums
over the weight systems of the fundamental representations ofg and are explicitly covariant under
the corresponding Weyl group action. In deriving these results we start from the Moser formula
for theAr series and obtain the results for the other classical series of Lie algebras by imposing
appropriate involutions on the scattering data. Thus we also show how Moser’s solution goes
into that of Olshanetsky and Perelomov. The results for the large-time asymptotics of theAr -
CTC solutions are extended to the other classical seriesBr–Dr . We exhibit also some ‘irregular’
solutions for theD2n+1 algebras whose asymptotic regimes att →±∞ are qualitatively different.
Interesting examples of bounded and periodic solutions are presented and the relations between the
solutions for the algebrasD4,B3 andG2 are analysed.

1. Introduction

The famous Toda chain model [1–12] was initially introduced in order to study nearest-
neighbour interactions in atomic chains. Soon it was shown that it also possesses interesting
mathematical properties and that to each simple Lie algebrag one can relate a natural
generalization to the Toda chain [5–7, 9–11, 13–16], namely

d2Eq
dt2
=

r∑
k=1

αke
−(Eq,αk) (1.1)

where Eq = (q1, . . . , qr) is a vector in the root spaceEr of the algebrag of rank r andαk,
k = 1, 2, . . . , r are the simple roots ofg. One may viewqk(t) as the coordinate of the
kth particle and study the effect of their interaction. A number of results in this direction are
known showing how the (real) Toda chain (RTC) (1.1) can be viewed as a completely integrable
Hamiltonian system and how it can be solved explicitly, see [2–7, 9–11, 13, 14, 16].

Recently, it became known that generalizing the RTC model withg ' sl(N) to
‘complex’ particles (i.e. nowqk(t) become complex-valued functions) allows one to describe
the interactions in theN -soliton trains of the nonlinear Schrödinger equation in the adiabatic
approximation. In this case each soliton behaves as a separate entity (‘particle’); Reqk(t)

describes its centre-of-mass position and Imqk(t) determines its phase, for more details see
[17–20]. These facts draw our interest towards the study of the complex Toda chain (CTC)
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models when the dynamical variablesqk(t) become complex, while the time variablet stays
real.

It is well known that a large number of results for the RTC are trivially generalized to
the CTC case by just making the corresponding parameters complex. These include the Lax
pairs and the explicit solutions. However, since each ‘complex’ particle has two degrees of
freedom their interaction becomes much more complex and qualitatively different compared
to the real case. In particular, the set of asymptotic regimes for the CTC is much richer than
those of RTC. In addition to the asymptotically free particle regime (the only one possible
for RTC), CTC also allows for bound state regimes, mixed regimes, degenerate regimes, etc.
These facts were reported in [17–20, 34] and are compatible with the well known ones, see
[21–23, 27–33, 35, 36].

The present paper is a natural extension of [20]; it also contains proofs and generalizations
of the results in [20].

There are several methods for solving the RTC which also readily generalize for CTC.
The method in [6, 13, 14, 16] allows one to write down the solution as

(Eq(t), ωk)− (Eq(0), ωk) = ln〈ωk|e−2L(0)t |ωk〉 (1.2)

whereωk is the kth fundamental weight ofg, |ωk〉 is the highest weight vector in thekth
fundamental representationR(ωk) andL(0) is the Lax matrix evaluated att = 0, see formula
(2.1a) below. The right-hand side of (1.2) has the obvious advantage of being written in
compact and invariant form. However, it is difficult to extract from it explicitly parametrized
solutions.

Another well known approach to solving the Toda chain models was developed in [11]. It
allows one to express the solution in terms of 2r constants. Starting from a comparatively
simple expression forX1 = exp(−q1(t)) one then calculatesXk = exp(−qk(t)) as a
determinant of ak × k matrix whose elements are determined by the derivatives ofX1, see
[7, 11]. One may also use a recurrent procedure to evaluateXk. However, this leads to rather
complicated and difficult to analyse expressions.

Our first aim in the present paper will be to analyse (1.2) and write it down in the form

(Eq(t), ωk) = lnBg;k(t) (1.3a)

Bg;k(t) =
∑

γ∈0g(ωk)

exp
[−2(γ, Eζ )t + ( Eϕ0, γ )

]
W(k)(Eζ , γ ). (1.3b)

Here (γ, Eζ ) is the scalar product between the vectorEζ = (ζ1, ζ2, . . . , ζr ) and the weight
γ ∈ 0g(ωk); ζs are eigenvalues ofL(0) and we suppose that they satisfyζk 6= ζj for k 6= j .
The components of the vectorsEζ and Eϕ0 = (ϕ01, ϕ02, . . . , ϕ0r ) provide the 2r (complex)
parameters directly related to the minimal set of scattering dataTg of L(0), see formula (2.15)
below;0g(ωk) is the set of weights of thekth fundamental representation ofg;W(k)(Eζ , γ ) are
t-independent functions which are defined in section 3 below. Thus the right-hand side of (1.3)
like the right-hand side of (1.2) is invariant and at the same time is explicitly parametrized.
This fact allows us to calculate explicitly the large-time asymptotics ofEq(t):

lim
t→±∞(Eq(t)− Ev

±t) = Eϕ±0 + Eβ±. (1.4)

It is a well known fact [15, 16] thatEv+ = w0(Ev−) = −2Eζ , wherew0 is the Weyl group element
which maps the highest weightωk of thekth fundamental representationR(ωk) of g into the
corresponding lowest-weight vectorω−k . We provide explicit expressions forEβ± as functions
of Eζ and also show that

Eβ+(Eζ ) = Eβ−(w0(Eζ )) Eϕ+
0 = w0( Eϕ−0 ) = Eϕ0. (1.5)
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In fact the solutions to the CTC related to a certain simple Lie algebrag may be derived
in two ways. The first one is to cast the solution (1.2) in the form

〈ωk|e−2L(0)t |ωk〉 =
∑

γ∈0g(ωk)

(〈ωk|V |γ 〉)2e−2(Eζ ,γ )t (1.6)

and then try to evaluate the matrix elements〈ωk|V |γ 〉 in terms of the scattering dataTg. This
requires the explicit construction ofV for each of the fundamental representationsR(ωk) of g.

The second possibility which will be used below, is to start with the well known solution
of Moser [4] for sl(N) with conveniently chosenN and impose on the scattering data the
involution that restricts it tog. Obviously both solutions must coincide. The proof of this fact
is also one of the results in the present paper.

In the next section we introduce the notation and analyse the properties of the fundamental
representations of the classical series of simple Lie algebras and derive some useful relations
between the matrix elements of the typical and the other fundamental representations. In
section 3 we prove formula (1.3) for each of the classical seriesAr–Dr . In section 4 we
also extend the results for the large-time asymptotics of theAr -CTC solutions to the other
classical seriesBr–Dr . We also exhibit some ‘irregular’ solutions for theD2n+1 algebras
whose asymptotic regimes att → ±∞ are qualitatively different. We also provide some
interesting examples of bounded and periodic solutions and analyse the relations between the
solutions for the algebrasD4,B3 andG2.

2. Preliminaries

In what follows we shall use the so-called ‘symmetric’ Lax representation for the CTC
model (1.1):

L(t) =
r∑
k=1

(
bkHk + ak(Eαk +E−αk )

)
(2.1a)

M(t) =
r∑
k=1

ak(Eαk − E−αk ) (2.1b)

whereak = 1
2e−(q,αk)/2 andbk = 1

2dqk/dt . For g ' sl(N) we haveak = 1
2e(qk+1−qk)/2. It

is well known that to each rootα from the root system1g ⊂ Er one can relate the element
Hα of the Cartan subalgebrah ⊂ g. Analogously, toq(t) = Req(t) + i Im q(t) ∈ h there
corresponds the vectorEq(t) = ReEq(t) + i Im Eq(t), whose real and imaginary parts are vectors
in the root spaceEr .

The integrals of motion in involution for the CTC model are provided by the eigenvalues,
ζk = κk+iηk, ofL. The solutions of both the CTC and the RTC are determined by the scattering
data forL(0). When the spectrum ofL(0) is non-degenerate, i.e.ζk 6= ζj for k 6= j , then this
scattering data consists of

T ≡ {ζ1, . . . , ζN , r1, . . . , rN } (2.2)

whererk are the first components of the corresponding eigenvectorsv(k) of L(0) in the typical
representationR(ω1) of g, N = dimR(ω1). If we combine all eigenvectorsv(k) as columns
of the matrixV thenrk = V1k and

L(0)V = VZ Z = diag(ζ1, . . . , ζN). (2.3)
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It is known that the eigenvectors of symmetric matricesL(0) with a non-degenerate spectrum
can always be normalized, i.e. following [4, 11, 12] we require that

(v(k), v(k)) ≡
N∑
s=1

(Vsk)
2 = 1 k = 1, . . . , N (2.4)

and besidesV T = V −1. Equation (2.4) determinesrk up to a sign.
From (2.3) it follows that

G(t) ≡ e−2L(0)t = V e−2ZtV −1 (2.5)

and we can rewrite (1.2) in the form (1.3) with

Bg;k(t) =
∑

γ∈0g(ωk)

(〈ωk|V |γ 〉)2e−2(Eζ ,γ )t . (2.6)

Thus our aim will be realized if we obtain explicit expressions for the matrix elements〈ωk|V |γ 〉
of V in thekth fundamental representation in terms ofT which is determined by the spectral
data ofL(0) in the typical representationR(ω1) of g.

The eigenvalues ofL(0), and especially their real partsκk, which can be calculated directly
from the initial conditions as will become evident below, uniquely determine the asymptotic
behaviour of the solutions [20]. We will use this fact extensively for the description of the
different types of asymptotic behaviour.

The minimal set of scattering data forg ∼ sl(N) is obtained from (2.2) by imposing on
T the restrictions

∑N
k=1 ζk = 0 and

N∑
k=1

r2
k = 1 (2.7)

which follows fromV T = V −1. Therefore, one may consider asTAr
the set

TAr ≡ {ζ1, . . . , ζN ; ϕ̃01, . . . , ϕ̃0N } N = r + 1

ϕ̃0k = ln r2
k −

1

N

N∑
s=1

ln r2
s .

(2.8)

Although the number of elements inTAr
is 2N (instead of 2r = 2N − 2) it is obvious that

only 2r of them are independent.
For the other classical series of simple Lie algebras the elements ofT (2.2) satisfy

symmetry relations, namely [20]

ζk = −ζk̄ k̄ = N + 1− k (2.9)

rkrk̄ = e−q1(0)wk (2.10)

for k = 1, . . . , N whereN is the dimension of the typical representationR(ω1) and the value
of q1(t) at t = 0 is determined through the normalization condition (2.7). The coefficientswk
are time independent and are expressed in terms ofζ1, . . . , ζr as follows, see appendix A.

Br series:N = 2r + 1. Note that in this caseζr+1 = 0,

wk = 1

8ζ 2
k

k−1∏
s=1

1

4ζ 2
s − 4ζ 2

k

r∏
s=k+1

1

4ζ 2
k − 4ζ 2

s

(2.11)
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and in addition to (2.10),

r2
r+1 = e−q1(0)wr+1 wr+1 =

r∏
s=1

1

4ζ 2
s

. (2.12)

Inserting (2.10)–(2.12) into (2.7) we obtain a quadratic equation for exp(−q1(0)), so it can be
expressed in terms ofTg.

Cr series:N = 2r and

wk = − 1

4ζk

k−1∏
s=1

1

4ζ 2
s − 4ζ 2

k

r∏
s=k+1

1

4ζ 2
k − 4ζ 2

s

. (2.13)

Dr series:N = 2r and

wk =
k−1∏
s=1

1

4ζ 2
s − 4ζ 2

k

r∏
s=k+1

1

4ζ 2
k − 4ζ 2

s

. (2.14)

In the last two cases again exp(−q1(0)) is determined from (2.7). The derivation of the solution
for theDr series requires some additional efforts. The main problem here is related to the
treatment of the spinor representations.

The proof of (2.11)–(2.14) is based on the study of the properties of the corresponding
matricesV and is given in the appendix A. Then one easily finds that the set of parameters

Tg ≡ {ζ1, . . . , ζr;ϕ01, . . . , ϕ0r} ϕ0k = ln(rk/rk̄) (2.15)

uniquely determinesT (2.2), which in turn provides the full set of eigenvalues and eigenvectors
of L(0).

Next we will need a number of details from the representation theory of the simple Lie
algebras. In what follows byRg(ω)we will denote the representation ofg with highest weight
ω; 0g(ω) stands for the set of weights ofRg(ω). Often when the choice forg is clear from the
context, we will omit the subscript and will write simply0(ω) andR(ω). We will also need to
introduce ordering not only in the root system1g but also in the weight systemRg(ω). To this
end we will use a vectorEK in the root spaceEr such that(γ1−γ2, EK) 6= 0 and(α−β, EK) 6= 0
for any two weightsγ1 6= γ2 ∈ 0g(ω) and rootsα 6= β ∈ 1g. Without restrictions we can
chooseEK, together with the vector−Eκ = −ReEζ to be in the fundamental Weyl chamber so
that(ω − γ, EK) > 0 for anyγ ∈ 0g(ω).

Let us now denote byγk, k = 1, . . . , N the set of weights of the typical representation
0g(ω1) of g, namely

γk = ek − 1

r + 1

r+1∑
a=1

ea N = r + 1 (2.16a)

for g ' Ar ,

γk =
{
ek for 16 k 6 r
−ek̄ for r + 16 k 6 2r

N = 2r (2.16b)

for g ' Cr ,Dr ,

γk =


ek for 16 k 6 r
0 for k = r + 1

−ek̄ for r + 26 k 6 2r + 1

N = 2r + 1 (2.16c)
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for g ' Br ; in all formulae abovēk = N + 1− k. The corresponding weight vectors specify
an orthonormal basis inRg(ω1) and will be denoted by|γk〉.

An important and well known tool to construct the fundamental representations ofg is to
make use of the exterior tensor products ofRg(ω1). Indeed, the orthonormal basis in∧kRg(ω1)

consists of the weight vectors

|γI 〉 ≡ |γi1,i2,...,ik 〉 = |γi1 ∧ γi2 ∧ . . . ∧ γik 〉 I ≡ {i1, i2, . . . , ik} (2.17)

with 16 i1 < i2 < · · · < ik 6 N ; the weight corresponding to (2.17) is obviously

γI = γi1 + γi2 + · · · + γik . (2.18)

Here and in what follows we shall use the one-to-one correspondence between the set of indices
I and the corresponding weightγI and weight vector|γI 〉.

Forg ' Ar all fundamental representations are, in fact, exterior powers of the typical one
R(ω1):

R(ωk) = ∧kR(ω1) (2.19)

for k = 1, 2, . . . , r = N − 1 andγI = γ (k)I where the upper indexk means thatγ (k)I ∈ 0(ωk).
We remind also other well known fact, namely that in∧kR(ω1) we have

〈ωk|V |γ (k)I 〉 ≡ 〈γ1 ∧ γ2 ∧ . . . ∧ γk|V |γi1 ∧ γi2 ∧ . . . ∧ γik 〉 = V
{

1 2 . . . k

i1 i2 . . . ik

}
(2.20)

where

V

{
j1 j2 . . . jk

i1 i2 . . . ik

}
is the minor of the group elementV ∈ G determined by the intersection of the rows
j1, j2, . . . , jk with the columnsi1, i2, . . . , ik. Thus given a group elementV ∈ SL(r + 1)
in the typical representationR(ω1) one can construct its image for each of the fundamental
representationsR(ωk), k = 1, 2, . . . , r.

Let us now explain how this can be done for the other simple Lie algebras of the classical
series. To this end we shall make use of the well known facts about the root systems [24, 25]
of g and about the tensor products of their fundamental representations, see [26].

Let us now consider theBr series. Then we have

∧kR(ω1) = R(ωk)
∧rR(ω1) = R(2ωr)

for k = 1, 2, . . . , r − 1 (2.21)

where

ωk = e1 + e2 + · · · + ek ωr = 1
2(e1 + e2 + · · · + er). (2.22)

Hereωr is the highest weight of the spinor representation ofBr . Therefore, the relations (2.20)
also hold forg ' Br with k = 1, 2, . . . , r − 1.

Another well known fact is that the symmetric tensor product ofR(ωr) is generically
reducible and

R(ωr)⊗
S
R(ωr) = R(2ωr)⊕

[r/4]∑
i=1

R(ωr−4i+1)⊕ R(ωr−4i ) (2.23)

whereω0 = 0 andR(ω0) is the trivial one-dimensional representation ofg.
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We now have two possibilities to introduce a basis inR(2ωr). The first one is to use (2.17)
and (2.21) like above. The second possibility is to argue thatR(ωr)⊗

S
R(ωr) is spanned by

|γ (r)I ⊗ γ (r)I 〉 and
1√
2

(|γ (r)I ⊗ γ (r)J 〉 + |γ (r)J ⊗ γ (r)I 〉
)

(2.24)

whereγ (r)I ∈ 0(ωr) are weights of the spinor representation ofBr . Obviously they have the
form

γ
(r)
I = 1

2

r∑
k=1

σkek = 1
2

r∑
k=1

γik (2.25)

whereσk = ±1. The corresponding setsI (andJ ) now must be special in the sense that:
(a) r + 1 6∈ I ; (b) if ik ∈ I thenīk = N + 1− ik 6∈ I . In other words,I does not contain pairs
of ‘conjugated‘ indices. To the weight vector|γ (r)I ⊗ γ (r)I 〉 there corresponds the weight 2γ (r)I

which can be obtained from 2ωr by a Weyl group transformation. This means that|γ (r)I ⊗γ (r)I 〉
belongs to the representationR(2ωr) in the right-hand side of (2.23). Thus we find

V

{
1 2 . . . r

i1 i2 . . . ir

}
= 〈2ωr |V |2γ (r)I 〉

= 〈ωr ⊗ ωr |V |γ (r)I ⊗ γ (r)I 〉 =
(〈ωr |V |γ (r)I 〉

)2
. (2.26)

Next we chooseg ' Cr series. It is well known that the exterior products ofR(ω1)

generically are reducible, namely

∧kR(ω1) = R(ωk)⊕∧k−2R(ω1)

ωk = e1 + e2 + · · · + ek for k = 2, . . . , r
(2.27)

but the relations (2.17), (2.18) and (2.20) also hold forg ' Cr with k = 2, . . . , r.
Equation (2.27) reflects the existence of a non-trivial invariant subspace in∧2R(ω1) (see
[24])

|c〉 =
N∑
k=1

(−1)k+1|γk ∧ γk̄〉 =
N∑

k,m=1

Skm|γk ∧ γm〉 (2.28)

whereS is the matrix entering into the definition of the symplectic group (see (A.5) below);
namely

X ∈ Sp(2r) ↔ SXT S−1 = X−1. (2.29)

It is easy to check that due to (2.29) we haveX|c〉 = |c〉 for any elementX ∈ Sp(2r).
Thus we establish thatc determines the one-dimensional invariant subspace in∧2R(ω1) =
(C|c〉)⊕ R(ω2).

Let us now analyse the weights in the weight systems0(ωk) and their multiplicities.
The highest weighte1 + · · · + ek has multiplicity 1; the corresponding set of indices is
I = {1, 2, . . . , k}. Let us consider next the weightγ(1) = e1 + · · · + ek−2; to it there
corresponds each of the following sets of indicesI = {1, 2, . . . , k− 2, p, p̄}, k− 16 p 6 r.
Therefore, toγ(1) there corresponds the subspaceV (γ(1)) ⊂ ∧kR(ω1)which is spanned by the
vectors|γ1 ∧ . . . ∧ γk−2 ∧ γp ∧ γp̄〉 and has dimension dimV (γ(1)) = r − k + 2. At the same
time the Freudenthal formula shows that the multiplicity ofγ(1) = e1 + · · · + ek−2 in R(ωk) is
r−k+1. This difference is due to the fact that inV (γ(1)) there exist a one-dimensional invariant
subspace determined by|γ1 ∧ . . . ∧ γk−2 ∧ c〉. The same argument can be applied to each of
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the weightsγ ′(1) = wγ(1) wherew is an element of the Weyl group. Indeed, it is known that
the Weyl group preserves: (a) the lengths of the weights, i.e.(γ(1), γ(1)) = (γ ′(1), γ ′(1)) = k−2;
(b) the multiplicities of the weights. In fact, the Weyl group is isomorphic to the group of
permutationsS2r of the indices{1, 2, . . . , 2̄, 1̄}; therefore, instead of looking at the transformed
weightγ ′(1) we may consider the corresponding set of indices which can be obtained fromI

by applying a specific element ofS2r . This analysis can also be continued by considering
weights of lengthk− 4, e.g.γ(2) = e1 + · · · ek−4. Skipping the details we formulate the result,
namely

∧kR(ω1) = R(ωk)⊕ (C|c〉) ∧ (∧k−2R(ω1)). (2.30)

It remains only to note that from (2.20), (2.30) and fromV |c〉 = |c〉 there follows

〈ωk|V |γi1 ∧ . . . ∧ γik 〉 ≡ V
{

1 . . . k

i1 . . . ik

}
= 〈ωk|V |γ (k)I 〉 + ρ〈ωk|V |c ∧ γI ′ 〉
= 〈ωk|V |γ (k)I 〉 (2.31)

whereρ is some constant,γ (k)I ∈ R(ωk) andγI ′ ∈ ∧k−2R(ω1). In the last line we also used
the fact that the representationsR(ωk) and∧k−2R(ω1) span mutually orthogonal subspaces of
∧kR(ω1).

Finally, letg ' Dr series. Then we have

∧kR(ω1) = R(ωk) for k = 1, 2, . . . , r − 2 (2.32a)

∧r−1R(ω1) = R(ωr−1 + ωr) (2.32b)

∧rR(ω1) = R(2ωr)⊕ R(2ωr−1) (2.32c)

where

ωk = e1 + e2 + · · · + ek for k = 1, 2, . . . , r − 2 (2.33a)

ωr−1 = 1
2(e1 + e2 + · · · + er−1− er) (2.33b)

ωr = 1
2(e1 + e2 + · · · + er−1 + er). (2.33c)

From (2.32a) and (2.33a) we find that the relations (2.20) also hold forg ' Dr with
k = 1, 2, . . . , r − 2. Let us now analyse the spinor representationsR(ωr−1) andR(ωr)
ofDr . It is known [26] that

R(ωr)⊗ R(ωr−1) = R(ωr−1 + ωr)⊕
[(r−1)/2]∑
i=1

R(ωr−2i−1) (2.34a)

R(ωr)⊗
S
R(ωr) = R(2ωr)⊕

[r/4]∑
i=1

R(ωr−4i ). (2.34b)

where⊗
S

denotes the symmetrized tensor product andR(ω0) is the trivial one-dimensional

representation ofg.
The basis inR(ωr)⊗ R(ωr−1) is determined by|γ (r)I ⊗ γ (r−1)

I ′ 〉 whereγ (r)I ∈ 0(ωr) and
γ
(r−1)
I ′ ∈ 0(ωr−1). The sets of indicesI = {i1, . . . , ir} andI ′ = {i ′1, . . . , i ′r} are related to the

weightsγ (r)I andγ (r−1)
I ′ by

γ
(r−1)
I ′ = 1

2

r∑
k=1

σ ′kek = 1
2

r∑
k=1

γi ′k γ
(r)
I = 1

2

r∑
k=1

σkek = 1
2

r∑
k=1

γik (2.35)
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whereσk andσ ′k take values±1 and

r∏
k=1

σ ′k = −1 and
r∏
k=1

σk = 1. (2.36)

Let us now consider a pair of weightsγ (r)I andγ (r−1)
I ′ such thatσk = σ ′k for all but one value

of k, i.e.I ∩ I ′ = {j1, . . . , jr−1}. Then the vectorsγ (r)I + γ (r−1)
I ′ andωr + ωr−1 have the same

length and one can check that they are related by a Weyl group transformation. Therefore,
|γ (r)I ⊗ γ (r−1)

I ′ 〉 belongs to the representationR(ωr−1 + ωr) in (2.34a) and

V

{
1 2 . . . r − 1

i1 i2 . . . ir−1

}
= 〈ωr−1 + ωr |V |γ (r−1)

I ′ + γ (r)I 〉

= 〈ωr−1|V |γ (r−1)
I ′ 〉〈ωr |V |γ (r)I 〉. (2.37a)

Finally, the spinor representationR(ωr) is considered quite analogously to that of theBr case.
There is only one additional fact that should be taken care of: now the weights 2ωr and 2ωr−1

have the same length but are related by an outer-automorphism rather than by a Weyl group
element. In order to separate the weights belonging to the modulesR(2ωr) andR(2ωr−1) we
need projectors onto each of these invariant subspaces in∧rR(ωr) in (2.32c). As we shall see
below, we will need to sort out only the weights of lengthr which are given by either 2γ (r−1)

I

or by 2γ (r)I . The projectors which will separate these two types of weights can be constructed
by using (2.36) and the fact thatζk̄ = −ζk; the matrix elements of these projectors are given
by

f ±I ≡ f ±i1,i2,...,ir =
1

2

(
1± ζ1ζ2 . . . ζr

ζi1ζi2 . . . ζir

)
. (2.37b)

Indeed, it is easy to check now that

f +
I γ

(r−1)
I ′ = f −I ′ γ (r)I = 0 f +

I γ
(r)
I = γ (r)I f −I ′ γ

(r−1)
I ′ = γ (r−1)

I ′ . (2.37c)

Thus we obtain the relation

f +
i1,i2,...,ir

V

{
1 2 . . . r

i1 i2 . . . ir

}
= 〈2ωr |V |2γ (r)I 〉 = (〈ωr |V |γ (r)I 〉)2. (2.37d)

From (2.37a)–(2.37d) we find the necessary expressions for〈ωr−1|V |γ (r−1)
I 〉 and〈ωr |V |γ (r)I 〉

through the minors ofV , see (A.14).

3. The solutions of the CTC revisited

We will now analyse the structure of the solutions to the CTC for each of the classical series of
Lie algebras. Our aim will be to write them down in the form (1.3) and calculate the functions
W(k)(Eζ , γ ) for each of the classical series separately.

3.1. TheAr series

It is well known [4, 6, 12, 33] that the solutions in this case can be expressed through the
principal minors of the group elementG(t) (2.5). Using the Binet–Cauchy formula, or
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equivalently (2.20) and (A.3) we obtain the functions

A1(t) =
N∑
k=1

r2
ke−2ζk t (3.1)

Ak(t) =
∑

i1<i2<···<ik
r2
i1
r2
i2
. . . r2

ik
e−2(ζi1+ζi2 ...+ζik )tW 2(i1, i2, . . . , ik) (3.2)

AN(t) =
N∏
s=1

r2
s W

2(1, 2, . . . , N) = e−Nq1(0) (3.3)

which are proportional to the above-mentioned principal minors ofG(t). Hereζk, rk are the
scattering data of the Lax matrixL(0) introduced in (2.2), (2.7) andWI(Eζ ) ≡ W(i1, i2, . . . , ik)
is the Vandermonde determinant:

WI(Eζ ) ≡ W(i1, i2, . . . , ik) =
∏

s>p; s,p∈I
2(ζs − ζp). (3.4)

Note that each of the factors in the right-hand side of (3.4) can be viewed as the scalar
product (Eζ , α) whereα is an appropriately chosen rootα ∈ 1g. This and the fact that
(Eζ ,w0(α)) = (w0(Eζ ), α) make it easy to introduce in a natural way the action of the Weyl
group elementw0 onWI(Eζ ), namelyw0 : WI(Eζ )→ WI(w0(Eζ )).

The solution of the corresponding CTC is then given by

(Eq(t)− Eq(0), ωk) = lnAk(t) (3.5)

or

qk(t) = q1(0) + ln
Ak(t)

Ak−1(t)
(3.6)

with A0 = 1 andq1(0) defined by (3.3).
For further convenience we introduce the functions

Bk(t) = ekq1(0)Ak(t) (3.7)

and rewrite the solution to the CTC in the form

(Eq(t), ωk) = lnBk(t). (3.8)

Now introducing the set of variables (2.8) and taking into account (2.16a) we easily cast
the solution (3.8) into the form (1.3) with

Bk(t) = Bk(t) =
∑

γ
(k)
I ∈0(ωk)

exp
( Ẽϕ(t), γ (k)I

)
W 2
I (
Eζ )(W(1, 2, . . . , N))−2k/N (3.9)

Ẽϕ(t) = (ϕ̃1(t), . . . , ϕ̃N (t)) ϕ̃k(t) = −2ζkt + ϕ̃0k (3.10)

whereϕ̃0k were introduced in (2.8). Another possibility is to useEϕ(t) = −2Eζ t + Eϕ0 with

ϕ0k = ϕ̃0k − lnwk − 2

N
lnW(1, . . . , N) = q1(0) + ln

r2
k

wk

wk =
k−1∏
s=1

1

2(ζk − ζs)
N∏

s=k+1

1

2(ζs − ζk) (3.11)
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which gives

BAr ;k(t) =
N∑

i1<i2<···<ir
ρ2
i1
ρ2
i2
. . . ρ2

ik
e−2(ζi1+···+ζik )tW 2

I (
Eζ )wi1 . . . wik (3.12)

with ρk = eϕ0k . Then finallyBAr ;k(t) can be rewritten as

BAr ;k(t) =
∑

γ
(k)
I ∈0(ωk)

exp
( Eϕ(t), γ (k)I

)
W(k)(Eζ , γ (k)I ) (3.13)

with

W(1)(ζ, γk) = wk W(k)(Eζ , γ (k)I ) = W 2
I (
Eζ )
∏
s∈I
ws k = 2, 3, . . . , r. (3.14)

Now it is more natural to consider

TAr
≡ {ζ1, . . . , ζN , ϕ01, . . . , ϕ0N } N = r + 1 (3.15)

rather than (2.8), as the minimal set of scattering data for theAr algebra case. Indeed, the
elements of (3.15), like the ones of (2.8), naturally satisfy the identities

N∑
k=1

ζk = (Eζ , Eε) = 0
N∑
k=1

ϕ0k = ( Eϕ, Eε) = 0 (3.16)

ε = e1 + · · · + eN , which is directly related to the fact that all the roots ofAr also satisfy
(α, Eε) = 0.

However, equation (3.15) also has the advantage that imposing on its elements the
symmetry condition (2.9) and

ϕ0k = −ϕ0k̄ k̄ = N + 1− k (3.17)

one can obtain the minimal set of scattering data for theBr andCr series.
Indeed, let us chooseg ' A2r and let us impose onTA2r (2.9) and (3.17). First, note that

from (2.9) and (3.11) withN = 2r + 1 we immediately find thatwk takes the form (2.11) for
k = 1, . . . , r and (2.12) fork = r + 1; besides one can check thatwk̄ = wk.

Next, the condition (3.17) withϕ0,k̄ = q1(0)+ ln(r2
k̄
/wk) leads immediately to the relation

(2.10). Expressing from itq1(0) as ln(wk/(rkrk̄)) we easily obtainϕ0,k = ln(rk/rk̄) for
k = 1, . . . , r andϕ0,r+1 = 0. Thus we showed thatTA2r with (2.9) and (3.17) reduces to (2.15)
for the seriesBr .

The same procedure applied toTA2r−1 provides (2.15) for the seriesCr .

3.2. TheBr series

The solution is obtained from the one for theA2r series by imposing the relations (2.9)–(2.12).
Due to this only the firstr of the functionsAk(t) in (3.5) are independent. From the analysis
in section 2 we see that only the expression forAr(t) requires additional special treatment†,
see (2.26). Thus we find

Ak(t) = e−kq1(0)Bk(t) (3.18)
for k = 1, . . . , r − 1

Ar(t) = e−rq1(0)B2
r (t). (3.19)

† This is related to the existence of the spinor representation.
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whereBk(t) are of the form (1.3b),

Bk(t) =
∑

γ
(k)
I ∈0(ωk)

exp
( Eϕ(t), γ (k)I

)
W(k)(Eζ , γ (k)I ) (3.20)

with

W(1)(ζ, γk) = wk W(k)(Eζ , γ (k)I ) = W 2
I (
Eζ )
∏
s∈I
ws Eϕ(t) = −2Eζ t + Eϕ0 (3.21)

for k = 1, . . . , r − 1 and

W(r)(Eζ , γ (r)I ) = WI(Eζ )
r∏
s=1

w1/2
s . (3.22)

HereWI(Eζ ) is the Vandermonde determinant (3.4). We remind the reader that to each weight
γ
(k)
I ∈ 0(ωk) there corresponds an ordered set of indicesI = {i1 < · · · < ik} and thatwk

are defined by (2.11) and (2.12). Each setI uniquely definesγ (k)I . If the weightγ (k)I has a
multiplicity greater than 1 then there exist several sets of indices related toγ

(k)
I . For example,

the weightse1+· · ·+ek ande1+· · ·+ek−1 in0(ωk) have multiplicities 1; the corresponding sets
of indices are{1, 2, . . . , k} and{1, 2, . . . , k−1, r +1}, respectively. The weighte1 + · · ·+ek−2,
however, has multiplicityr − k + 2; one may assign to it each of the following sets of indices
{1, 2, . . . , k − 2, p, p̄} wherek − 1 6 p 6 r. Analogously to the weighte1 + · · · + ek−3

and e1 + · · · + ek−4 with multiplicities r − k + 3 and
(
r−k+4

4

)
one can assign each of the

sets{1, . . . , k − 3, p, r + 1, p̄} with k − 2 6 p 6 r and{1, . . . , k − 4, p1, p2, p̄1, p̄2} with
k − 3 6 p1 < p2 6 r. In other words, we find that the number of setsI corresponds to the
number of weights provided each weight is counted as many times as its multiplicity.

We note thatBk(t) can also be written in the form

Bk(t) =
∑
γ
(k)
I >0

2 cosh
( Eϕ(t), γ (k)I

)
W(k)(Eζ , γ (k)I ) +

∑
I :γ (k)I =0

W(k)(Eζ , γ (k)I ) (3.23)

where the second sum runs over the sets of indices corresponding to the weight equal to zero.
For theBr series these sets are of the form

{p1, . . . , ps, p̄1, . . . , p̄s} for k = 2s

and

{p1, . . . , ps, r + 1, p̄1, . . . , p̄s} for k = 2s + 1.

Formula (3.23) reflects the fact that0(ωk) is symmetric in the sense that ifγ (k)I ∈ 0(ωk)
then−γ (k)I = w0(γ

(k)
I ) ∈ 0(ωk). One can also check that

W(k)(Eζ , γ (k)I ) = W(k)(w0(Eζ ), w0(γ
(k)
I )) = W(k)(Eζ , γ (k)

Ī
) Ī = {īk, . . . , ī1}.

3.3. TheCr series

Remark 1. When one imposes the symmetry condition (2.9) and (2.10) on theA2r−1 CTC
the corresponding system of equations is slightly different from (1.1). The difference consists
only in the coefficient of the term e−(Eq,αr ) which comes out asαr/2 instead ofαr . The extra
1
2 factor is easy to take into account and therefore for theCr series the relation betweenqk(t)
andBk(t) is slightly different, namely

qk(t) = ln
Bk(t)
Bk−1(t)

+
1

2
ln 2. (3.24)
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Now we insert (2.13) into (3.1) and (3.2) to obtain the solutions for theCr series. Thus
we obtain

Ak(t) = e−kq1(0)Bk(t) (3.25)

for all k = 1, 2, . . . , r where

Bk(t) =
∑

i1<···<ik
exp

( Eϕ(t), γi1...ik)W(k)(Eζ , γi1...ik ) Eϕ(t) = −2Eζ t + Eϕ0 (3.26)

W(1)(ζ, γk) = wk W(k)(Eζ , γi1...ik ) = W 2(i1, . . . , ik)

k∏
s=1

wis (3.27)

andγi1...ik is a weight in∧kR(ω1). From our analysis in section 2 (see (2.30)) each of the
weightsγi1,...,ik = γi1 + · · · + γik can be split into|γi1,...,ik 〉 = |γ (k)I 〉 + ρ|c ∧ γI ′ 〉 (see (2.31))
and we have

〈ωk|V |γi1,...,ik 〉 ≡ V
{

1 . . . k

i1 . . . ik

}
= 〈ωk|V |γ (k)I 〉. (3.28)

This means that the summation over all sets of indicesi1 < i2 < · · · < ik in (3.26) reduces to
the sum over the weights of0(ωk) only,

Bk(t) = Bk(t) =
∑

γ
(k)
I ∈0(ωk)

exp
(
Eϕ(t), γ (k)I

)
W(k)(Eζ , γ (k)I ) (3.29)

W(k)(Eζ , γ (k)I ) = W 2
I (
Eζ )
∏
s∈I
ws k = 2, 3, . . . , r (3.30)

i.e. we cast the solution in the form (1.3). Besides, as for theBr series againw0(γ
(k)
I ) = −γ (k)I

so we have

Bk(t) =
∑
γ
(k)
I >0

2 cosh
( Eϕ(t), γ (k)I

)
W(k)(Eζ , γ (k)I ) +

∑
I :γ (k)I =0

W(k)(Eζ , γ (k)I ). (3.31)

We note that the sets of indices corresponding toγ
(k)
I = 0 are given by{p1, . . . , ps, p̄1, . . . , p̄s}

for k = 2s and by the empty set fork = 2s + 1.

3.4. TheDr series

There are some differences in treating this case due to the fact that the Lax matrixL(0) (A.8)
is not a tridiagonal one. Nevertheless, the Moser formula (3.1)–(3.3) forN = 2r, together
with the corresponding involution (2.9), (2.10), (2.14) provides the solution toDr . Due to the
somewhat different structure of the eigenmatrixV we find that the firstr − 1 functionsAk(t)
are given by (3.1), (3.2) and onlyAr(t) must be replaced by [20]

Ãr (t) =
∑

i1<···<ir
r2
i1
. . . r2

ir
exp

(−2(ζi1 + · · · + ζir )t
)
(f +
i1,...,ir

)2W 2(i1, . . . , ir ). (3.32)

Besides, theDr algebras have two spinor representations which require additional care.
Note also that due to (A.14) the projectorf +

i1...ir
(2.37b) enters in a natural way intõAr . Thus

in the right-hand side only the terms related to the weights ofR(2ωr) give non-vanishing
contributions.



988 V S Gerdjikov et al

Let us introduce the variables (2.15) and along with (3.7) fork = 1, . . . , r − 1 let us put
Br(t) = erq1(0)Ãr (t); then we can rewrite the solution for theDr series in the form

(Eq(t), ωk) = lnBk(t) for k = 1, . . . , r − 2 (3.33)

(Eq(t), ωr−1 + ωr) = lnBr−1(t) (Eq(t), 2ωr) = lnBr(t). (3.34)

Our analysis in section 2 shows thatwk = wk̄ and

Bk(t) = Bk(t) for k = 1, . . . , r − 2

Br−1(t) = Br−1(t)Br (t) Br(t) = Br (t)2
(3.35)

with

Bk(t) =
∑

γ
(k)
I ∈0(ωk)

exp
( Eϕ(t), γ (k)I

)
W(k)(Eζ , γ (k)I ) for k = 1, . . . , r. (3.36)

Here

W(1)(ζ, γk) = wk Eϕ(t) = −2Eζ t + Eϕ0 (3.37)

W(k)(Eζ , γ (k)I ) = W 2
I (
Eζ )
∏
s∈I
ws k = 1, . . . , r − 2 (3.38)

W(r−a)(Eζ , γ (r−a)I ) = √w1 . . . wr WI (Eζ ) a = 0, 1 (3.39)

and the set of indicesI = {i1, . . . , ir} in (3.39) is such that it determines uniquely the weight
γ
(r−a)
I ∈ 0(ωr−a) in the corresponding spinor representation. In addition,

(Eq(t), ωr−a) = lnBr−a(t). (3.40)

The explicit solutions for RTC with the simplest choices forg with rank 2 in invariant
form were proposed in the monograph [11]; they coincide with the particular cases of the ones
given above provided a proper identification of the variables is performed. Here we choose to
provide as examples the solution to theD4 case and its relation to the solutions forB3 andG2.

Example 1. Let g ' D4 = so(8). Then it has three eight-dimensional representations:
R(ω1) and the two spinor onesR(ω3) andR(ω4). The representationR(ω2) is of dimension
28. We also remind the reader thatD4 has an outer-automorphismv1 of order three which
interchanges the eight-dimensional representations; more precisely,

v1 : α1→ α3→ α4→ α1 v1α2 = α2

v1 : ω1→ ω3→ ω4→ ω1 v1ω2 = ω2.
(3.41)

The equations of motion for theD4-CTC have the form

q1,t t = eq2−q1 q2,t t = eq3−q2 − eq2−q1

q3,t t = −eq3−q2 + eq4−q3 + e−q3−q4 q4,t t = −eq4−q3 + e−q3−q4.
(3.42)

The solution is provided by

q1(t) = lnB1(t) q2(t) = ln
B2(t)

B1(t)

q3(t) = ln
B3(t)B4(t)

B2(t)
q4(t) = ln

B4(t)

B3(t)

(3.43)
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where

B1(t) = 2
4∑
k=1

wk coshϕk(t) (3.44a)

B2(t) = 8
4∑
i<j

wiwj
[
(ζj − ζi)2 cosh(ϕi + ϕj ) + (ζj + ζi)

2 cosh(ϕi − ϕj )
]

+ 16
4∑
i=1

w2
i ζ

2
i

(3.44b)

B3(t) = 2−11
4∏
i<j

1

ζ 2
i − ζ 2

j

{
W(1, 2, 3, 4̄) cosh1

2(ϕ1 + ϕ2 + ϕ3− ϕ4)

+W(1, 2, 4, 3̄) cosh1
2(ϕ1 + ϕ2 − ϕ3 + ϕ4)

+W(1, 3, 4, 2̄) cosh1
2(ϕ1− ϕ2 + ϕ3 + ϕ4)

+W(2, 3, 4, 1̄) cosh1
2(ϕ1− ϕ2 − ϕ3− ϕ4)

}
(3.44c)

B4(t) = 2−11
4∏
i<j

1

ζ 2
i − ζ 2

j

{
W(1, 2, 3, 4) cosh1

2(ϕ1 + ϕ2 + ϕ3 + ϕ4)

+W(1, 2, 4̄, 3̄) cosh1
2(ϕ1 + ϕ2 − ϕ3− ϕ4)

+W(1, 3, 4̄, 2̄) cosh1
2(ϕ1− ϕ2 + ϕ3− ϕ4)

+W(2, 3, 4̄, 1̄) cosh1
2(ϕ1− ϕ2 − ϕ3 + ϕ4)

}
(3.44d)

ϕk(t) = −2ζkt + ϕ0k. (3.44e)

We also note that̄4= 5, 3̄= 6, 2̄= 7, 1̄= 8; W(i, j, k, l) are defined by (3.4) and in both the
summation and the products, denoted above byi < j we mean thati andj take values from
1 to 4.

It is well known that the automorphismv1 maps not only the fundamental weightsωk
as in (3.41) but also the whole sets of weights, e.g.v1 : 0(ω1) → 0(ω3) → 0(ω4). Using
the definition ofBk(t) and the properties of the scalar products(Eζ , v1γ

(k)) = (v−1
1
Eζ , γ (k)) we

obtain

B1(t; Eζ , Eϕ0) = B3(t; v−1
1
Eζ , v−1

1 Eϕ0) = B4(t; v1Eζ , v1 Eϕ0)

B2(t; Eζ , Eϕ0) = B2(t; v1Eζ , v1 Eϕ0).
(3.45)

These relations are compatible with (1.3), i.e.

(Eq(t), ω3,4) = lnB3,4(t; ζ, ϕ0) = (Eq(t), v±1
1 ω1) = lnB1(t; v±1

1
Eζ , v±1

1 Eϕ0).

Example 2. Next we will derive the result forB3 starting from theD4 case. It is well known
thatB3 can be obtained fromD4 by imposing a symmetry condition with respect to the outer-
automorphismv2 ofD4 defined by

v2αk = αk for k = 1, 2 v2α3 = α4 v2α4 = α3. (3.46)

The symmetry with respect tov2 reflects on the scattering data of theD4 case by

ζ4 = 0 ϕ04 = 0 or ϕ4(t) = 0. (3.47)

To the end of this example, when referring to the variables related toD4 we will assume these
conditions to be imposed and will denote this fact by an additional ‘prime’; the corresponding
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variables for theB3 case will be denoted by the same letters with an additional ‘tilde’. Then
inserting (3.47) into (2.14) we can write

w′k = 2w̃k k = 1, 2, 3 w′4 = w̃4. (3.48)

In analogy with (3.45) we have

B′4(t; Eζ , Eϕ0) = B′3(t; v2Eζ , v2 Eϕ0) (3.49)

and after imposing thev2-involution symmetry, namely,(Eq(t), ωk) = (Eq(t), v2ωk) for eachk
we haveq ′4 = 0. Indeed, using (3.47) one can find thatB′4(t; Eζ , Eϕ0) = B′3(t; Eζ , Eϕ0)which leads
to q ′4 = 0. In this wayq ′1, q

′
2 andq ′3 give us solutions of a system, equivalent to that ofB3.

More precisely after some rearrangements we find that

B′1(t) = 2B̃1(t) B′2(t) = 4B̃2(t) B′3(t) = B′4(t) = 23/2B̃3(t). (3.50)

Comparing (3.50) with (3.43) we see that

q ′k(t) = q̃k(t) + ln 2 k = 1, 2, 3 q ′4(t) = 0 (3.51)

where

q̃1(t) = ln B̃1(t) q̃2(t) = ln
B̃2(t)

B̃1(t)
q̃3(t) = ln

B̃2
3(t)

B̃2(t)
. (3.52)

The condition (3.47), or equivalently,q ′4(t) = 0 when imposed onto the system of
equations (3.42) leads to a system forq ′k(t), k = 1, 2, 3 slightly different from theB3-CTC.
The difference is in the coefficient in front ofα3e−(Eq

′,α3) which comes out with an additional
factor of 2. This factor is precisely cancelled if we go over to the variablesq̃k(t).

Quite analogously, but with more technicalities, one can prove that the symmetry with
respect to the outer-automorphismv2 ofDr will reduce theDr solution to that forBr−1; more
precisely, using an analogous notation as above, we can write

B′k(t) = 2kB̃k(t) for k = 1 . . . , r − 2 B′r−1(t) = B′r (t) = 2(r−1)/2B̃r−1(t) (3.53)

and

q ′k(t) = q̃k(t) + ln 2 for k = 1, . . . , r − 1 q ′r (t) = 0

q̃k(t) = ln
B̃k(t)
B̃k−1(t)

for k = 1, . . . , r − 2 q̃r−1(t) = ln
B̃2
r−1(t)

B̃r−2(t)
.

(3.54)

In deriving (3.50) we see, that due toζ4 = 0 two of the terms inB1(t) combine together;
this corresponds to the fact that0B3(ω1) has only seven weights, while0D4(ω1) has eight.
Analogous, but more complicated combinations and cancellations take place in the proof of
(3.54).

Example 3. The case withG2 can be obtained fromD4 after imposing a symmetry condition
with respect to the outer-automorphismv1 (3.41) ofD4 of order three. The restrictions that
v1 imposes on the scattering data are

ζ4 = 0 ζ1− ζ2 = ζ3 ϕ04 = 0 ϕ01− ϕ02 = ϕ03 (3.55)

or, in other words,

v1(Eζ ) = Eζ v1( Eϕ0) = Eϕ0.

Then one can check that due to (3.45)Eq(t) is invariant with respect tov1: v1(Eq(t)) = Eq(t)
and, consequently, is an element of the subalgebraG2.
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Indeed, if we average the set of simple roots ofD4 with respect to the action ofv1 and
also the system of equations (3.42) then we obtain the system of simple roots ofG2:

β1 = 1
3(α1 + α3 + α4) = 1

3(e1− e2 + 2e3) β2 = α2 = e2 − e3 (3.56)

and the system of equations

Q1,t t = e−( EQ,β1) Q2,t t = e−( EQ,β2) − e−( EQ,β1) (3.57)

which is slightly different from (1.1) forG2; namely the variables, let sayq ′1, q ′2 and
q ′3 = −q ′1− q ′2, entering in the original system (1.1) forG2 are

q ′1(t) = Q1(t)− 2 ln 3 q ′2 = Q2 − ln 3 (3.58)

The solution to (3.57) is provided by

Q1 = lnB1(t; Eζ , Eϕ0) Q2 = ln
B2(t; Eζ , Eϕ0)

B1(t; Eζ , Eϕ0)
(3.59)

whereB1,2(t) are obtained from (3.44a) and (3.44b) with the additional restrictions (3.55);
namely, we have

B1(t; Eζ , Eϕ0) = 2b0b1

[
ζ2 − ζ3

ζ1
coshϕ1 +

ζ1 + ζ3

ζ2
coshϕ2 +

ζ1 + ζ2

ζ3
coshϕ3

]
+ 2b2

1

B2(t; Eζ , Eϕ0) = b0b
2
1

[
ζ 2

1

ζ2ζ3

cosh( E01, Eϕ)
ζ2 − ζ3

+
ζ 2

2

ζ1ζ3

cosh( E31, Eϕ)
ζ1 + ζ3

+
ζ 2

3

ζ1ζ2

cosh( E32, Eϕ)
ζ1 + ζ2

+
3(ζ1 + ζ2)

ζ1ζ2
cosh( E10, Eϕ) +

3(ζ1 + ζ3)

ζ1ζ3
cosh( E11, Eϕ)

+
3(ζ2 − ζ3)

ζ2ζ3
cosh( E21, Eϕ)

]
+ 12b2

0b1

(
1

ζ3
+

1

ζ2
− 1

ζ1

)
b0 = 1

8(ζ1 + ζ2)(ζ1 + ζ3)(ζ2 − ζ3)
b1 = 1

8ζ1ζ2ζ3

(3.60)

where byEij we denote the rootiβ1 + jβ2 ofG2. Obviously each of the terms inBk(t) in (3.60)
can be related to a weight of the corresponding fundamental representation0(ωk) ofG2; so
again we cast the solution in the form (1.3).

We summarize the results of this section by the following remark. One can view the
solutions of the CTC related to the classical seriesBr , Cr as being obtained from the Moser
formulae combined with the corresponding constraint on the scattering data. The case ofDr

can be obtained likewise if we take the Lax matrix to be pentadiagonal as in (A.8).
On the other hand, starting from a Lax matrix related to each of these series we can always

apply Moser’s approach and derive as a result the functionsqk(t), k = 1, . . . , N . In order for
both answers for the CTC-solutions to be compatible one needs to show that

qk(t) = −qk̄(t) k̄ = N + 1− k (3.61)

whereN is the dimension of the typical representation ofg. Equation (3.61) can be derived
from the results in sections 2 and 3 and shows the compatibility of the two approaches to the
CTC solutions.
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4. Dynamical regimes and large time asymptotics

There are important differences between the RTC and CTC, especially in the asymptotic
behaviour of their solutions. Indeed, for the RTC, one has [4, 12] that, both the eigenvalues,
ζk and the constantsϕk(0), are always real-valued. Moreover, one can prove thatζk 6= ζj for
k 6= j , i.e. no two eigenvalues can be exactly the same. As a direct consequence of this, it
follows that the only possible asymptotic behaviour in the RTC is an asymptotically separating,
free motion of the particles.

The situation is different for the CTC. Now the eigenvaluesζk = κk + iηk, as well as the
constantsϕk(0) become complex. Furthermore, the argument of Moser [4] does not apply to
the complex case, so one can have multiple eigenvalues. The collection of eigenvalues,ζk, still
determines the asymptotic behaviour of the solutions. In particular, it isκk that determines
the asymptotic velocity of thekth particle. For simplicity, we assumeζk 6= ζj for k 6= j .
However, this condition does not necessarily mean thatκk 6= κj . We also assume that theκk ’s
are ordered as

κ1 6 κ2 6 · · · 6 κN . (4.1)

This ordering is known as the sorting condition. More generally it can be understood
as−Eκ ∈ W̄D—the closure of the dominant Weyl chamber. Once this is done, for the
corresponding set ofN particles there are three possible general configurations.

(A) Free-particle propagation (Moser case); thenqk(t) have a linear-in-t asymptotic behaviour
and−Eκ is in the interior ofWD.

(B) Bound state(s) and mixed regimes when one (or several) group(s) of particles form a bound
state; then each group of particles oscillate around a common trajectory with a linear-in-t

asymptotic behaviour; then−(Eκ, αk) = 0 for some set of indicesk ∈ Ibs.

(C) Degenerate solutions when two (or more) of the eigenvaluesζk = ζk+1 = · · · are equal,
thenqk(t)−qk+1(t)have a logarithmic-in-t asymptotic behaviour, i.e. the distance between
the particles grows as lnt .

Obviously cases (B) and (C) have no analogues in the RTC and physically are qualitatively
different from (A).

4.1. Asymptotically free regimes

We begin with the first possibility from the above-mentioned free-particle asymptotics (the
Moser case). It is realized that if we require that all real parts of the eigenvaluesκk are
pairwise different; i.e.−Eκ belongs to the interior of the dominant Weyl chamberWD:

(−Eκ, αs) > 0 s = 1, . . . , r (4.2)

while the imaginary partsηk may be arbitrary.
Let us now consider the asymptotics for theAr ,Br ,Cr andDr series. Using the explicit

expressions forBk(t) it is not difficult to evaluate their asymptotic behaviour fort →±∞:

B±k,as(t) = W(k)(Eζ , ω±k ) e(−2Eζ t+Eϕ0,ω
±
k )
(
1 +O(exp(∓K±k t))

)
. (4.3)
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Here ω±k are the highest (lowest) weights, related through the Weyl group elementw0:
ω+
k = w0(ω

−
k ) and

K+
k = min

γ∈0(ω+
k )\ω+

k

Re(Eζ , γ − ω+
k ) = −(Eκ, αk)

K−k = min
γ∈0(ω+

k )\ω−k
Re(Eζ , γ − ω−k ) = −(Eκ, αk̃)

see appendix B. (4.4)

Note the natural way in which the two asymptotics are related by thew0 transformation
of the Weyl group, namely

B−k,as(t) = w0
(
B+
k,as(t)

) = W(k)(Eζ ,w0(ω
+
k )) e( Eϕ(t),w0(ω

+
k ))

= W(k)(w0(Eζ ), ω+
k ) e(w0( Eϕ(t)),ω+

k ). (4.5)

More generally sinceW(k)(Eζ , γ ) depends only on the scalar products of the type(Eζ , γ ) the
action of the automorphismw0 onW(k)(Eζ , γ ) is given byW(k)(Eζ ,w0(γ )) = W(k)(w0(Eζ ), γ ).

The relations (4.3) and (4.4) are due to the simple fact that the leading exponent fort →∞
(t → −∞) in Bk(t) corresponds to the weightγ ∈ 0(ωk) for which the value of Re(−Eζ , γ )
is maximal (minimal). Since−Eκ ∈ WD this maximum (minimum) is realized whenγ = ω+

k

(respectively,γ = ω−k ).
From the previous considerations we have

qk(t) = ln
Bk(t)

Bk−1(t)
=

r∑
s=1

2(αs, ek)

(αs, αs)
lnBs(t) (4.6)

and consequently the asymptoticsEq±as of Eq(t) for t →±∞ are given by

Eq+
as(t) = −2Eζ t + Eϕ0 +

r∑
k=1

2αk
(αk, αk)

lnW(k)(Eζ , ω+
k ) (4.7)

Eq−as(t) = w0
(−2Eζ t + Eϕ0

)
+

r∑
k=1

2αk
(αk, αk)

lnW(k)(w0(Eζ ), ω+
k ) (4.8)

up to terms falling off exponentially fort →±∞. The explicit expressions for the components
qk(t) for theAr series are well known, see, e.g., [4, 12, 20]. For the other classical series of
Lie algebras we obtain

q±k,as(t) = ∓2ζkt ± ϕ0k + βk +O
(
e∓N

±
k t
)

k = 1, . . . , r (4.9)

with

βk = ln

(
wk

k−1∏
s=1

(2ζs − ζk)2
)

N±k = min
s:(ek,αs )6=0

K±s . (4.10)

The only exception to (4.9) and (4.10) is forg ' Dr with odd r, k = r andt → −∞;
then

q−r,as(t) = −2ζr t + ϕ0r + ln

(
wr

r−1∏
s=1

(2ζr + 2ζs)
2

)
. (4.11)

It has been known for a long time [15, 16] that for the RTC the asymptotic velocitiesEv±
are related byEv− = w0(Ev+). In the complex case the analogues ofv± are the complex vectors
−2Eζ and−2w0(Eζ ), respectively.
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Up to now we know of only one physical application of CTC as a model describing the
N -soliton train interactions [17–20]. Gaining insight from it we will interpret Reqk(t) as the
trajectory of the centre of mass of thekth ‘particle’ (soliton). Besides each particle is complex
and possesses an internal degree of freedom. Then−2 Reζk = −2κk will be the asymptotic
velocity of thekth particle att →∞, while−2 Im ζk = −2ηk determines its asymptotic phase
velocity.

4.2. Mixed regimes forBr ,Cr andD2n

Our aim in this and the next subsection will be to consider the cases when two or more particles
form bound state(s); we will say that several particles form a bound state if they have equal
asymptotic velocities. In this subsection we consider only those members of the classical series
for whichw0 ≡ −id.

Bound state(s) are possible when−Eκ is on the boundaries ofWD, i.e. if we have

−(αk, Eκ) = 0 k ∈ Ibs (4.12)

whereIbs⊂ {1, . . . , r} is a subset of indices. IfIbs= {m} contains just one indexm < r then
κm = κm+1 and we will have a two-particle bound state. IfIbs = {m,m + 1, . . . , m + p} and
m + p < r thenκm = κm+1 = · · · = κm+p and we have a(p + 1)-particle bound state. The
cases when the largest index inIbs is equal tor should be considered separately; indeed, due to
the fact that the sets of simple roots for the different classical series differ only in the choices
for αr these cases may lead to substantially different results.

In our previous paper [20] we obtained the large-time asymptotics for the two-particle
bound states in theAr CTC. Here we will briefly analyse more general cases when:

(a) g belongs to the other classical series and one bound state may be present, i.e. when
Ibs= {m},m 6 r andIbs= {m,m + 1},m + 16 r;

(b) two bound states may be present, i.e.Ibs= {m,p},m + 1< p 6 r.
For brevity we will write down the asymptotics only for those componentsqk(t) which differ
from the typical ones (4.9). We will limit ourselves to the cases when the mixed regime
contains two- and three-particle bound states only. The other more complicated regimes can
be analysed analogously.

Indeed, if fork ∈ Ibs we have(Eκ, αk) = 0 then at least two terms inBk(t) may have
the same asymptotic behaviour. To our purpose it is sufficient to evaluate only the leading
exponents. Thus we find

B±p,as(t) = e(ϕ(t),ω
±
p )

[
W(p)(Eζ , ω±p ) +

∑
α∈G±p (Eκ)

W̄ (p)(α) +O
(
e∓K

′,±
p t
)]

(4.13)

where

K ′,±p = min
γ∈0p,±(ω+

p)

[−2(Eκ, ω+
p − γ )

]
W̄ (p)(α) = e−(ϕ(t),α)W(p)(Eζ , ω±p ∓ α)

G±p (Eκ) =
{
α > 0, (α, Eκ) = 0, ±2(α, ω±p )

(α, α)
> 1

}
0p,±(ω+

p) = 0(ω+
p)\

{
ω±p , ω

±
p ∓ α, α ∈ G±p (Eκ)

}
(4.14)

The condition(α, Eκ) = 0 ensures that̄W(p) only oscillates whent → ±∞, while the
third condition inG±p (Eκ) means thatω±p ∓ α ∈ 0(ω+

p).
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We start with the simplest caseIbs = {m}, which contains several qualitatively different
subcases which will be listed below. In each of them it is possible to describe the sets of roots
G±p (Eκ) and to evaluate the estimating exponentsK ′±p , for details see appendix B. It turns out
thatG±p (Eκ) ≡ ∅ for p 6= m andG+

m(Eκ) ≡ {αm}, G−m(Eκ) ≡ G+
m(w0(Eκ)) ≡ {w0(αm)}. In

what follows we will concentrate mainly on the asymptotics fort →∞; the asymptotics for
t → −∞ we will obtain by formula (4.8). Therefore, the asymptotics ofB+

p,as(t) for p 6= m
will be given by (4.3), while forB+

m,as(t) we obtain

B+
m,as(t) = e(ϕ(t),ω

+
m)
[
W(m)(Eζ , ω+

m) + W̄ (m)(αm) +O
(
e−K

′+
m t
)]

(4.15)

with the following result forK ′+m valid for any of the algebras in the classical series (see
appendix B):

K ′+m = min
s:(αs ,αm)6=0

[−2(Eκ, αs)
]
. (4.16)

In other words, the minimum should be taken with respect to the simple rootsαs that are
connected toαm in the Dynkin diagram.

Now we are in a position to compare the asymptotic velocities of the particles and to
single out the structure of the bound states (if any). Since the asymptotic velocity ofqk(t) for
t →∞ is equal to−2κk we just have to see what constraints on{κ1, . . . , κr} will be imposed
by−(Eκ, αk) > 0, k 6= m and−(Eκ, αm) = 0. Forg ' Br ,Cr andm < r we have

κ1 < · · · < κm = κm+1 < · · · < κr < 0 (4.17)

for g ' D2n andm < 2n− 1,m = 2n− 1 we have

κ1 < · · · < κm = κm+1 < · · · < κ2n−1 < −|κ2n| < 0 (4.18)

and

κ1 < · · · < κm < κm+1 < · · · < κ2n−1 = κ2n < 0 (4.19)

respectively.
Finally, for g ' Br ,Cr andm = r we obtain

κ1 < · · · < κr−1 < κr = 0 (4.20)

and forg ' D2n andm = 2n

κ1 < · · · < κ2n−1 = −κ2n < 0. (4.21)

From (4.17)–(4.19) it is easy to see that form < r we always have one bound state of two
particles (mth and (m + 1)st); the rest of the particles go into a free asymptotic regime. If in
additionw0 = −id, as we assumed in the beginning of this subsection, this bound state will
also be present fort →−∞. Therefore, for this class of algebras we have stable two-particle
bound states for allm < r.

Form = r the situation is different. From (4.20) we see that the condition−(Eκ, αr) = 0
for g ' Br , Cr just means that therth particle has vanishing velocity. As forg ' D2n

the condition−(Eκ, α2n) = 0 means that the(2n − 1)st and the 2nth particles have opposite
velocities. Therefore, form = 2n no bound states are possible.

The next possibility is that the setIbs ≡ {m,p}. There are qualitatively different cases
here: (a)(αm, αp) = 0 and (b)(αm, αp) 6= 0. Each of the valuesm andp in case (a) can
be considered independently and to each of them applies the analysis already posed above.
In the generic casem < p < r we will have two pairs of bound states each containing two
particles; ifm < p = r then we have only one bound state of two particles. An exception here
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is the caseg ' D2n andm = 2n − 1, p = 2n. The two rootsα2n−1 andα2n are obviously
orthogonal, but now the condition (4.12) leads toκ2n = κ2n−1 = 0 and as a result in this case
we have only one bound state consisting of two particles with vanishing velocities.

Let us now analyse case (b). For generic values ofm < p < r what we find is a bound
state of three particles. One possible realization of (b) is to takep = m + 1 < r; then the
condition (4.12) leads to

κ1 < · · · < κm = κm+1 = κm+2 < · · · κm+3 < · · · (4.22)

i.e. the particles numbered bym, m + 1 andm + 2 move with the same asymptotic velocities
and form a bound state. Again we must look through all possibilities when case (b) takes
place and point out possible exceptions; such as, for example, the case wheng ' Br ,Cr and
m = r − 1, p = r. Equation (4.12) then givesκr−1 = κr = 0, which means that this is a
bound state of two particles: the(r − 1)st and therth with vanishing velocity.

If g ' D2n andm = 2n − 2, p = 2n − 1 we obtain a three-particle bound state with
velocity κ2n−2 = κ2n−1 = κ2n < 0. The last example related to this algebra ism = 2n − 2,
p = 2n which corresponds toκ2n−2 = κ2n−1 = −κ2n. This means that the particles 2n − 2
and 2n− 1 form a bound state, but the last 2nth particle moves with the opposite velocity and
is not part of the bound state.

Obviously the number of examples can be extended to include setsIbs with more indices;
one can expect to have bound states with an increasing number of bounded particles. It is
not difficult to also present the explicit form of the asymptotics ofq±k,as(t). The most difficult
part in this calculation is to determine the sets of rootsG±p (Eκ). We list these sets of roots
in appendix B for the classical series of Lie algebras related to the setsIbs with one and two
indices. Indeed, if we chooseg ' Br , Ibs= {r − 1, r}. Then the sets of roots

G+
r−1(Eκ) = {αr−1, αr−1 + αr, αr−1 + 2αr} G+

r (Eκ) = {αr, αr−1 + αr, αr−1 + 2αr}.

Then

B+
r−1,as= e(ϕ(t),ω

+
r−1)
[
W(r−1)(Eζ , ω+

r−1) + W̄ (r−1)(αr−1)

+W̄ (r−1)(αr−1 + αr) + W̄ (r−1)(αr−1 + 2αr)
]

B+
r,as= e(ϕ(t),ω

+
r )
[
W(r)(Eζ , ω+

r ) + W̄ (r)(αr) + W̄ (r)(αr−1 + αr) + W̄ (r)(αr−1 + 2αr)
]
.

(4.23)

Now we have to insert (4.23) into (4.6). After some calculations we obtainκr−1 = κr = 0 and

q+
r−1,as(t) = −2iηr−1t + ϕ0r−1 + ln

6r−1

W(r−2)(Eζ , ω+
r−2)

q+
r,as(t) = −2iηr t + ϕ0r + ln

62
r

6r−1

6p = W(p)(Eζ , ω+
p) + 6̃p p = r − 1, r

6̃p = W̄ (p)(αp) + W̄ (p)(αr−1 + αr) + W̄ (p)(αr−1 + 2αr).

(4.24)

In this subsection we have presented various types of mixed regimes which could be
called regular. By regular here we mean that the number and the structure of the bound states
at t →−∞ coincides with that fort →∞. In the next subsection we consider the ‘irregular’
mixed regimes, which change qualitatively their structure during the evolution.
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4.3. Mixed regimes forD2n+1: ‘creation’ and ‘decay’ of bound states

The ‘irregular’ mixed regimes take place only for algebras for whichw0 6= −id. This takes
place forg ' Ar andg ' D2n+1. At the end of this subsection we will explain why the
‘irregular’ regimes, i.e. the effects of ‘creation’ and ‘decay’ of bound states can be related only
to g ' D2n+1.

First of all we note that most of the bound states related toD2n+1 are regular. So are
the states corresponding toIbs = {m} with m < 2n andIbs = {m,p} with m < p < 2n.
The formulae for the asymptotics in all these cases are quite analogous to the ones already
presented.

Let us start with the first ‘irregular’ case withIbs = {2n}. This means thatκ2n = κ2n+1

and fort →±∞
q±2n,as= ∓2κ2nt ∓ 2iη2nt ± ϕ0,2n + β±,′2n (

Eζ )
q±2n+1,as= −2κ2nt − 2iη2n+1t + ϕ0,2n+1 + β±,′2n+1(

Eζ )

β
+,′
2n (
Eζ ) = ln

[
W(2n)(Eζ , ω+

2n) + W̄ (2n)(α2n)
]
W(2n+1)(Eζ , ω+

2n+1)

W(2n−1)(Eζ , ω+
2n−1)

β
+,′
2n+1(
Eζ ) = ln

W(2n+1)(Eζ , ω+
2n+1)

W(2n)(Eζ , ω+
2n) + W̄ (2n)(α2n)

(4.25)

andβ−,′k (Eζ ), k = 2n, 2n + 1 are obtained fromβ+,′
k (
Eζ ) by using (1.5). Obviously att →−∞

the 2nth and the(2n+ 1)st particles have opposite velocities, while fort →∞ their velocities
become equal. This situation can be viewed as ‘creation’ of a bound state.

The second ‘irregular’ case is withIbs= {2n + 1}. This means thatκ2n = −κ2n+1 and for
t →±∞

q±2n,as= ∓2κ2nt ∓ 2iη2nt ± ϕ0,2n + β±,′′2n (
Eζ )

q±2n+1,as= 2κ2nt − 2iη2n+1t + ϕ0,2n+1 + β±,′2n+1(
Eζ )

β
+,′′
2n (
Eζ ) = ln

[
W(2n+1)(Eζ , ω+

2n+1) + W̄ (2n+1)(α2n+1)
]
W(2n)(Eζ , ω+

2n)

W(2n−1)(Eζ , ω+
2n−1)

β
+,′′
2n+1(
Eζ ) = ln

W(2n+1)(Eζ , ω+
2n+1) + W̄ (2n+1)(α2n+1)

W(2n)(Eζ , ω+
2n)

(4.26)

and againβ−,′k (Eζ ), k = 2n, 2n + 1 are obtained fromβ+,′
k (
Eζ ) by using (1.5). Now att →−∞

the 2nth and the(2n + 1)st particles have equal velocities, while fort → ∞ their velocities
become opposite. This situation can be viewed as ‘decay’ of a bound state.

The next more complex situation is whenIbs = {m,p}. Again we should consider two
distinct subcases, namely(αp, αm) = 0 and(αm, αp) 6= 0.

In both cases we recover ‘regular’ asymptotics providedm < p < 2n; namely for such
choices ofIbs we have either two pairs of two-particle bound states (if(αm, αp) = 0) or a
three-particle bound state (if(αm, αp) 6= 0).

The ‘irregular’ cases with(αm, αp) = 0 are of two types. The first one takes place if
m < 2n andp = 2n (p = 2n + 1). Then fort → −∞ (t → ∞) we have two bound
states formed by the particles{m,m + 1} and {2n, 2n + 1}, while at t → ∞ (t → −∞)
the second bound state decays and we are left with only one bound state. Quite different is
the situation whenIbs = {2n, 2n + 1}. This corresponds toκ2n = κ2n+1 = 0, so this is a
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regular case but with onlyone bound stateformed by the particles{2n, 2n+ 1} with vanishing
velocity.

There are only two ‘irregular’ cases with(αm, αp) 6= 0, namelyIbs = {2n − 1, 2n} and
Ibs = {2n − 1, 2n + 1}. The first one leads toκ2n−1 = κ2n = κ2n+1 < 0 and to the following
asymptotic behaviour ofqk(t), k = 2n− 1, 2n and 2n + 1:

q±2n−1,as= ∓2κ2n−1t ∓ 2iη2n−1t ± ϕ0,2n−1 + β ′,±2n−1

q±2n,as= ∓2κ2n−1t ∓ 2iη2nt ± ϕ0,2n + β ′,±2n

q±2n+1,as= −2κ2n−1t − 2iη2n+1t + ϕ0,2n+1 + β ′,±2n+1

β
′,+
2n−1 = ln

6
′,+
2n−1(
Eζ )

W(2n−2)(Eζ , ω+
2n−2)

β
′,+
2n = ln

6
′,+
2n (
Eζ )W(2n+1)(Eζ , ω+

2n+1)

6
′,+
2n−1(
Eζ )

β
′,+
2n+1 = ln

W(2n+1)(Eζ , ω+
2n+1)

6
′,+
2n (
Eζ )

6′,+p (Eζ ) = W(p)(Eζ , ω+
p) + W̄ (p)(αp) + W̄ (p)(α2n−1 + α2n).

(4.27)

From these formulae we find that fort →−∞we have a two-particle bound state formed
by (2n− 1)st and 2nth particles, while fort →∞ the(2n + 1)st particle ‘joins’ them and we
have a three-particle bound state.

The case withIbs= {2n− 1, 2n+ 1} is analogous: the only difference is that att →−∞
we have a three-particle bound state formed by the(2n − 1)st, 2nth and(2n + 1)st particles,
while for t →∞ the(2n+1)st particle ‘separates’ from them and we are left with a two-particle
bound state.

Let us analyse this situation on the basis of our remark at the end of section 3. Let us
first explain why such an irregular solution is not possible for theAr series. In this case we
haver + 1 particles and the sets of asymptotic velocities fort →∞ andt →−∞ differ only
in the ordering:{−2κr+1 6 −2κr 6 · · · 6 −2κ1} and{−2κ1 > −2κ2 > · · · > −2κr+1},
respectively. That is why it was quite natural to identify thekth particle att → −∞ with
the k̄th particle att → ∞: they move with equal velocities. This is compatible with the
action ofw0 in theAr case, see (B.2). As a result if we have, say two bound states at
t →−∞, i.e.−2κ1 = −2κ2 > −2κ3 = −2κ4 at t →∞ we will have again two bound states
−2κr+1 = −2κr < −2κr−1 = −2κr−2.

Next we can view the solutions of CTC related to the classical seriesBr , Cr andDr as
special symmetric solutions of thesl(N)-CTC, see (3.61). Then it is enough to consider only
‘half’ of the trajectories; the other half being obtained as a ‘mirror’ image. In this situation
the sets of initial and final velocities are different and the identification, good forAr , is not
possible for the other classical series; also quite different is the action ofw0 on the orthonormal
basis of the root space, see (B.2).

As we mentioned above, if we consider the whole picture with allN trajectories we will see
that no ‘creation’ or ‘decay’ of bound states takes place. In the cases ofD2n+1 and(Eκ, α2n) = 0
(or (Eκ, α2n+1) = 0) this can be explained as follows. Fort →∞ (t →−∞) we have a bound
state between the 2nth and(2n + 1)st particle which fort → −∞ (t → ∞) transfers into a
bound state between the 2nth and its ‘mirror’ symmetric(2n + 2)th particle. ‘Cutting’ off the
symmetric trajectories with numbers 2n + 2, . . . , N = 4n + 2 we find the effects described
above.

Analogously we can explain the situation with a three-particle bound state att → ±∞
and a two-particle bound state att →∓∞. The whole picture of 4n + 2 particles will always
contain a three-particle bound state.
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4.4. Bound state regimes. Periodic and singular regimes

These regimes take place ifEκ = 0, i.e. the set of eigenvaluesζk = iηk are purely imaginary.
Then each of the functionsBk(t) will be generically bounded. In particular, this means that
all the complex ‘particles‘ (or solitons) will move together, forming a bound state with a large
number of degrees of freedom. In order to avoid degeneracies we have to request thatEη ∈ WD.

In order to have periodic solutions we need one more restrictions uponηk, namely

ηk − ηm = skmη0 (4.28)

whereskm are integers; ifskm are rational we can always make them integers by rescalingη0.

Example 4. Letg ' B2 = so(5). The corresponding equations have the form

d2q1

dt2
= eq2−q1

d2q2

dt2
= −eq2−q1 + e−q2 (4.29)

and their periodic solutions are given by

q1 = lnB1(t) q2 = ln
B2

2(t)

B1(t)
(4.30)

where

B1(t) = 1

16η4
0(p

2
1 − p2

2)

{
cos 2p1(8(t) + 0)

p2
1

+
cos 2p2(8(t)− 0)

p2
2

+
p2

1 − p2
2

p2
1p

2
2

}
(4.31a)

B2(t) = −i

8η3
0p1p2

{
cos(p+8(t) + p−0)

p+
+

cos(p−8(t) + p+0)

p−

}
(4.31b)

whereηk = pkη0, pk are integers and

8(t) = η0t +
i

4

(
φ01

p1
+
φ02

p2

)
0 = i

4

(
φ01

p1
− φ02

p2

)
p± = p1± p2. (4.32)

The period is provided by

τ = π

η0s0
(4.33)

wheres0 is the greatest common divisor ofp1, p2, p+ andp−.

Our next remark is that in the generic case when Reφ0k 6= 0 the solution (4.31) is a
regular one; then|B1(t)| and |B2(t)| are strictly positive for allt . If, however, we choose
Reφ01 = Reφ02 = 0 then|B1(t)| and |B2(t)| may vanish and the corresponding solutions
q1(t) andq2(t) become singular. Due to the periodicity, if|B1(t)| and|B2(t)| vanish at certain
pointst01 andt02, respectively, then they will also vanish att01 +kτ andt02 +kτ for any integer
k = 0,±1,±2, . . . .

Example 5. Let g ' C2 = sp(4). Since the algebrasB2 ' C2, then the corresponding
solutions differ by a change of variables. Let us denote all variables of theC2-CTC model by
the same letters as forB2, adding an additional ‘bar’ to distinguish between them. Then the
C2-CTC system has the form

d2q̄1

dt2
= eq̄2−q̄1

d2q̄2

dt2
= −eq̄2−q̄1 + 2e−2q̄2 (4.34)

and the solution is presented by

q̄1(t) = ln B̄1(t) + ln 2 q̄2(t) = ln
B̄2(t)

B̄1(t)
+ 1

2 ln 2 (4.35)



1000 V S Gerdjikov et al

where

B̄1(t) = 2B2(t, ζ̄1, ζ̄2, φ̄01, φ̄02) B̄2(t) = 2B1(t, ζ̄1, ζ̄2, φ̄01, φ̄02) (4.36)

andBk(t) are given by (4.31) and

ζ̄1 = ζ1 + ζ2 ζ̄2 = ζ1− ζ2

φ̄01 = φ01 + φ02 φ̄02 = φ01− φ02.
(4.37)

Of course these last two examples are analytic continuations of the solutions presented in
[11].

In analogy with the previous example we may assumeζk to be purely imaginary with
ηk = pkη0 with integer pk. Then we obtain the corresponding periodic solutions to
equation (4.34). More generally, inserting purely imaginary values forζk will result in a
periodic solution in all the above examples. These solutions may become singular if the
corresponding parametersφ0k are purely imaginary.

4.5. Degenerate solutions

Let us briefly discuss the degenerate solutions to the CTC. The degeneracy is possible only if
the matrixL(0) has non-trivial Jordan cells [20].

One possibility to derive the degenerate solutions is to evaluate the limitζ1 → ζ2 →
· · · → ζk of the solution (3.9) and (3.10) using the l’Hospital rule.

If, in particular, we have complete degeneracy (i.e. allζk are equal to zero) the solution of
thesl(N)-CTC can be obtained in a simpler way. Since allBk(t) are polynomials int which
must satisfy

B0(t) = BN(t) = 1 B̈kBk − Ḃ2
k = Bk−1Bk+1 (4.38)

we find that they depend onN − 1 constantsfk, k = 1, . . . , N − 1. More specificallyBk(t)
must be a polynomial of degreek(N − k) whose coefficients can be determined explicitly, for
example, by the method of undefined constants.

For example, forN = 3 andζ1 = ζ2 = ζ3 = 0 we obtain

B1(t) = − 1
2 t

2 + f1t + f2 B2(t) = − 1
2 t

2 + f1t − f 2
1 − f2 (4.39)

andB3 = 1, wherefk, k = 1, 2 are complex constants. Iff1 is real we may use the translational
invariance of the CTC equation and changet → t +f1 to eliminate it; then the solution (4.39)
can be written in the form

B1(t) = − 1
2 t

2 + F1 B2(t) = − 1
2 t

2 − F1 F1 = 1
2f

2
1 + f2. (4.40)

If F1 is real, then the solutionsqk(t) have singularities fort = ±√2|F1|. The large time
asymptotics are given by

q±1,as(t) = −q±3,as(t) = 2 ln t − ln 2 + iπ q±2,as(t) = 0 (4.41)

i.e. they do not depend on the constantsfk and are complex. Analogously forN = 4 and
ζ1 = ζ2 = ζ3 = ζ4 = 0 we find

B0(t) = B4(t) = 1 B1(t) = 1
6(t

3 + f1t
2 + f2t + f3)

B2(t) = − 1
12t

4 − 1
9f1t

3− 1
18f

2
1 t

2 − 1
18(f1f2 − 3f3)t − 1

36(f
2
2 − 2f1f3) (4.42)

B3(t) = − 1
6t

3− 1
6f1t

2 − ( 1
9f

2
1 − 1

6f2)t − 1
54(2f

3
1 − 6f1f2 + 9f3)
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wherefk, k = 1, 2, 3 are complex constants. Iff1 is real we may changet → t + f1/3 to
eliminate one of these constants; then the solution (4.42) can be written in the form

B1(t) = 1
6

(
t3 + F2t + F3

)
B2(t) = − 1

36

(
3t4 − 6F3t + F 2

2

)
B3(t) = − 1

6

(
t3− F2t + F3

) (4.43)

whereF1 andF2 are expressed throughfk by

F2 = f2 − 1
3f

2
1 F3 = f3 + 2

27f
3
1 − 1

3f1f2. (4.44)

Obviously, these solutions will be regular ifBk(t) have complex roots and will develop
singularities if one (or more) of their roots are real. More specifically ifF2 = 0 the solution
becomes symmetric, i.e.B1(t) = −B3(t) and has a singularity att = 0. If in additionF3 is
real, then there are singularities also fort = − 3

√
F3 andt = 3

√
2F3.

The asymptotics of these solutions are easy to calculate:

q1,as±(t) = 3 ln t − ln 6 q2,as±(t) = ln t − ln 2− iπ (4.45)

q3,as±(t) = − ln t + ln 2 q4,as±(t) = −3 ln t + ln 6 + iπ. (4.46)

Note that again these asymptotics: (a) do not depend on the constantsFk and (b) are always
complex. The last property is a consequence of the fact that degeneracy is only possible for
the CTC.

5. Conclusions

Detailed analysis of the properties of the fundamental representations of the simple Lie algebras
allowed us to propose an effective and invariant parametrization for the solutions of the
CTC. These solutions describe much richer asymptotical regimes compared to the RTC. The
explicit solutions proposed above allow one to evaluate explicitly the large-time asymptotics
for the whole variety of dynamical regimes. The degenerate solutions also deserve further
investigation.

One final remark is that one more step is necessary for the perfection of the explicit
formulae (1.3), namely one should look for an invariant expression for the functions
W(k)(Eζ , γ (k)I ) in terms ofγ (k)I and the roots system1 only. Work in this direction is in
progress.
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Appendix A. The properties ofV

Here we outline some of the details in deriving the expressions forAk(t) andBk(t). As we
mentioned in section 2 we need the explicit expressions for the minors ofV .
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Let us consider the eigenvalue problem (2.3) and let us make use of the explicit tridiagonal
form ofL(0). Then it is not difficult to find that the eigenvector related toζk is of the form

v(k) =



rkp1

rkp2(ζk + P0(ζk))

rkp3(ζ
2
k + P1(ζk))

...

rkpN(ζ
N−1
k + PN−2(ζk))


(A.1)

wherePs(ζk) stands for a polynomial of degrees in ζk and

p1 = 1 p2 = 1

a1(0)
p3 = 1

a1(0)a2(0)
pN = 1

a1(0) . . . aN−1(0)
. (A.2)

Next we note that the terms withPs(ζk) do not contribute to the minors

V

{
1 . . . k

i1 . . . ik

}
and so

V

{
1 . . . k

i1 . . . ik

}
= ri1 . . . rikp1 . . . pkW(i1, . . . , ik) (A.3)

where

W(i1, . . . , ik) = det

∣∣∣∣∣∣∣∣∣∣
1 . . . 1

2ζi1 . . . 2ζik
...

...

(2ζi1)
k−1 . . . (2ζik )

k−1

∣∣∣∣∣∣∣∣∣∣
=

∏
s>p;s,p∈I

2(ζs − ζp) (A.4)

is the Vandermonde determinant andI = {i1, . . . , ik}. Next we have to take care of the factors
ps , which can be expressed throughEq(0) sinceak(0) = 1

2 exp(−(Eq(0), αk)/2). We also note
thatrk are determined up to a sign by the normalization condition (2.4). These remarks and the
properties of the fundamental representations of the seriesAr (2.19) and (2.20) are sufficient
to treat theAr series.

Let us now derive the symmetry relations (2.9) and (2.10) for theBr andCr algebras. To
this end we introduce theS matrices as follows:

S =
r∑
k=1

(−1)k+1
(
Ekk̄ +Ek̄k

)
+ (−1)rEr+1,r+1 for Br

=
r∑
k=1

(−1)k+1
(
Ekk̄ − Ek̄k

)
for Cr

=
r∑
k=1

(−1)k+1
(
Ekk̄ +Ek̄k

)
for Dr (A.5)

which enter into the definition of the corresponding orthogonal and symplectic algebras. By
Ejk we denote anN × N matrix whose matrix elements are equal to(Ejk)mn = δjmδkn and
as in (2.9)k̄ = N + 1− k. Then we make use of the fact that ifV is a group element of the
corresponding group thenV T = SV −1S−1, i.e.

rk = V
{

1 . . . ˆ̄k . . . N

1 . . . k . . . N − 1

}
(A.6)
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where the ‘hat’ means that the indexk̄ is missing. Equations (A.3) and (A.6) readily give

rkrk̄ =
W(1, . . . , ˆ̄k, . . . , N)
pk̄W(1, . . . , N)

N∏
s=1

psrs. (A.7)

Taking the product of (A.7) fork = 1 to r one is able to evaluate
∏N
s=1 rk in terms ofps and

ζs alone. Next puttingps , N andζs as appropriate for the seriesBr andCr we derive the
expressions forwk (2.11)–(2.13).

For theDr series the matrixL(0) is of the form

L(0) =



b1 a1
a1 b2

. . .
. . .

. . .

br−1 ar−1 ar 0
ar−1 br 0 ar
ar 0 −br ar−1
0 ar ar−1 −br−1

. . .
. . .

. . .

−b2 a1
a1 −b1


. (A.8)

For thekth eigenvector we obtain

v(k) '



rkp1

rkp2ζk
...

rkpr−1ζ
r−2
k

rkpr(ζ
r−1
k +C/ζk)

rkpr(ζ
r−1
k − C/ζk)
rkζ

r
k pr+2

...

rkζ
2r−2
k p2r



(A.9)

whereC is a coefficient to be calculated below. The symbol' in (A.9) means that in the
right-hand side we have omitted terms polynomial inζk which do not contribute to the minors
of V . Note also thatC enters into play only when we need a minor of orderr or higher. Such
a necessity appears in two cases: when we evaluate the expression (3.32) forÃr (t) and when
we derive the symmetry relation.

From (2.3) and the explicit formula forL(0) (A.8) we find thatpk in (A.9) are given as
follows:

p1 = 1 pk =
k−1∏
s=1

1

as(0)
for k = 2, . . . , r − 1

pr = 1

2

r−1∏
s=1

1

as(0)
pr+1 = 1

2ar(0)

r−2∏
s=1

1

as(0)
pr+2 = 1

2

r∏
s=1

1

as(0)

pr+k = pr+2

k−1∏
s=2

1

ar−s(0)
for k = 3, . . . , r.

(A.10)
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The determinant ofV gives

1= detV = 2(−1)r−1CW(1, . . . ,2r)
2r∏
s=1

rsps

ζs
. (A.11)

In analogy with (A.6) and (A.7) we obtain

rprp̄ = (−1)r2Cζp
p2r

W(1, . . . , ˆ̄p, . . . ,2r)
W(1, . . . ,2r)

2r∏
s=1

psrs

ζs
. (A.12)

Taking again the product
∏r
p=1 rprp̄ in (A.12) and substituting the expressions forps from

(A.10) we find

C = (−1)r+1
r∏
s=1

ζs (A.13)

and, in addition, the relation (2.14).
Now it is easy to find the expression for the minor of orderr:

V

{
1 . . . r

i1 . . . ir

}
= 1

2

(
1 +

ζ1 . . . ζr

ζi1 . . . ζir

)
W(i1, . . . , ir )

r∏
s=1

ris ps (A.14)

needed for the derivation of̃Ar(t) (3.32).

Appendix B. Algebraic details

The action ofw0 on the simple roots is well known [24, 25]:

w0(αk) = −αk̃ (B.1)

wherek̃ = r − k + 1 forAr ; k̃ = k, k = 1, . . . , r forBr ,Cr andD2n. Forg ' D2n+1 we have
k̃ = k for k 6 2n− 1 andw0(α2n) = −α2n+1, w0(α2n+1) = −α2n. More specificallyw0 acts
on the orthonormal basis{ek} in the root space as follows:

w0(ek) = ek̄ for Ar

w0(ek) = −ek for Br ,Cr ,D2n

(B.2)

and forD2n+1

w0(ek) = −ek for k = 1, . . . ,2n w0(e2n+1) = e2n+1.

Next, it is well known that the weight system0(ω) is determined uniquely by the highest
weightω. The reconstruction of the weightsγ ∈ 0(ω) is performed by using two facts:

(i) if γ ∈ 0(ω) thenw(γ ) ∈ 0(ω) wherew is any element of the Weyl group; besidesγ and
w(γ ) have equal multiplicities;

(ii) if α > 0 is a positive root and

2(α, ω)

(α, α)
= p > 0 (B.3)

thenω − sα ∈ 0(ω) for all s = 1, . . . , p.
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In particular, if ω = ω+
k and α = ∑r

s=1msαs we see that (B.3) is fulfilled only if
mk = p > 0. Thus we find that generically (i.e. fork < r) along withω+

k , weights in
0(ω+

k ) are also

γ1 = ω+
k − αk γ2 = ω+

k − (αk−1 + αk) etc.

Using the sorting condition (4.2) we easily find that

min
γ∈0(ω+

k )\ω+
k

[−(Eκ, ω+
k − γ )

] = min

[
r∑
s=1

ms(−Eκ, αs)
]
= −(Eκ, αk) (B.4)

which proves the estimations in equations (4.3).
The same method can also be applied when one of the roots satisfies(Eκ, αm) = 0. As

a consequence of this condition at least two terms inBk(t) may have the same asymptotic
behaviour.

Here we will first describe the sets of rootsG+
p(Eκ) (see (4.14)) and then will also outline the

proof of (4.16). Obviously if(Eκ, αm) = 0 onlyG+
m(Eκ)will be non-empty and will coincide with

{αm} and therefore0p,+(ω+
p)\{ω+

p}, while0m,+(ω+
m)\{ω+

m, ω
+
m−α} whereα = αm +

∑
s msαs .

The minimum of−2(Eκ, ω+
m − α) will be achieved if we limit ourselves with rootsα of height

2. Now it remains to take into account thatαm + αs is a root if and only if(αm, αs) < 0. The
corresponding result fort →−∞ is obtained by acting withw0. This proves (4.16).

We finish this appendix by describing the sets of rootsG+
p(Eκ) for (Eκ, αm) = (Eκ, αm) = 0.

First, if (αm, αp) = 0 thenG+
m(Eκ) = {αm}, G+

p(Eκ) = {αp} and all the othersG+
k (Eκ) = {∅}.

If, however, (αm, αp) < 0 the situation becomes more interesting. In the generic case
(αm, αp) = −1 we find

G+
m(Eκ) = {αm, αm + αp} G+

p(Eκ) = {αp, αm + αp}.
The only two exceptions of this rule for the classical series arem = r − 1,p = r for g ' Br

andCr . Then we have

G+
r−1(Eκ) = {αr−1, αr−1 + αr, αr−1 + 2αr} G+

r (Eκ) = {αr, αr−1 + αr, αr−1 + 2αr}
for g ' Br and

G+
r−1(Eκ) = {αr−1, αr−1 + αr, 2αr−1 + αr} G+

r (Eκ) = {αr, αr−1 + αr, 2αr−1 + αr}
for g ' Cr . These last relations allow us to calculate the asymptotics ofB±k,as for all possible
values ofk for Ibs = {m,p}. Then it is not difficult to insert them in (4.6) and evaluate the
asymptotic behaviour of allqk(t). Several examples of such calculations were presented in
section 4 above.
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