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Abstract. We propose a compact and explicit expression for the solutions of the complex Toda
chains related to the classical series of simple Lie algegprakhe solutions are parametrized by

a minimal set of scattering data for the corresponding Lax matrix. They are expressed as sums
over the weight systems of the fundamental representatiopsoél are explicitly covariant under

the corresponding Weyl group action. In deriving these results we start from the Moser formula
for the A, series and obtain the results for the other classical series of Lie algebras by imposing
appropriate involutions on the scattering data. Thus we also show how Moser’s solution goes
into that of Olshanetsky and Perelomov. The results for the large-time asymptotics 4f the

CTC solutions are extended to the other classical s@jedD,. We exhibit also some ‘irregular’
solutions for theD», +1 algebras whose asymptotic regimes at oo are qualitatively different.
Interesting examples of bounded and periodic solutions are presented and the relations between the
solutions for the algebraB,, B3 andG, are analysed.

1. Introduction

The famous Toda chain model [1-12] was initially introduced in order to study nearest-
neighbour interactions in atomic chains. Soon it was shown that it also possesses interesting
mathematical properties and that to each simple Lie alggbome can relate a natural
generalization to the Toda chain [5-7,9-11, 13-16], namely

dzq - —(q.ax)
@ = Zake ’ (11)
k=1
whereq = (¢1,...,q,) is a vector in the root spadé of the algebragy of rankr ande,
k = 1,2,...,r are the simple roots of. One may viewg,(r) as the coordinate of the

kth particle and study the effect of their interaction. A number of results in this direction are
known showing how the (real) Toda chain (RTC) (1.1) can be viewed as a completely integrable
Hamiltonian system and how it can be solved explicitly, see [2-7,9-11, 13, 14, 16].

Recently, it became known that generalizing the RTC model with~ s/(N) to
‘complex’ particles (i.e. now, (1) become complex-valued functions) allows one to describe
the interactions in thé/-soliton trains of the nonlinear Sddinger equation in the adiabatic
approximation. In this case each soliton behaves as a separate entity (‘particle;)z Re
describes its centre-of-mass position andglifr) determines its phase, for more details see
[17-20]. These facts draw our interest towards the study of the complex Toda chain (CTC)
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976 V S Gerdjikov et al

models when the dynamical variablggr) become complex, while the time variablstays
real.

It is well known that a large number of results for the RTC are trivially generalized to
the CTC case by just making the corresponding parameters complex. These include the Lax
pairs and the explicit solutions. However, since each ‘complex’ particle has two degrees of
freedom their interaction becomes much more complex and qualitatively different compared
to the real case. In particular, the set of asymptotic regimes for the CTC is much richer than
those of RTC. In addition to the asymptotically free particle regime (the only one possible
for RTC), CTC also allows for bound state regimes, mixed regimes, degenerate regimes, etc.
These facts were reported in [17—-20, 34] and are compatible with the well known ones, see
[21-23,27-33, 35, 36].

The present paper is a natural extension of [20]; it also contains proofs and generalizations
of the results in [20].

There are several methods for solving the RTC which also readily generalize for CTC.
The method in [6, 13, 14, 16] allows one to write down the solution as

G(), w) — (G(0), wp) = In{awy e |ayy) (1.2)

wherewy is the kth fundamental weight of, |w;) is the highest weight vector in theh
fundamental representatidt(w;) andL(0) is the Lax matrix evaluated at= 0, see formula
(2.1a) below. The right-hand side of (1.2) has the obvious advantage of being written in
compact and invariant form. However, it is difficult to extract from it explicitly parametrized
solutions.

Another well known approach to solving the Toda chain models was developed in [11]. It
allows one to express the solution in terms efcnstants. Starting from a comparatively
simple expression foX; = exp(—qi(t)) one then calculateX; = exp(—qg;(¢)) as a
determinant of & x k matrix whose elements are determined by the derivatives;pbee
[7,11]. One may also use a recurrent procedure to evaiatélowever, this leads to rather
complicated and difficult to analyse expressions.

Our first aim in the present paper will be to analyse (1.2) and write it down in the form

(g(1), wr) =InBg. (1) (1.39)
Bar() = Y exp—2y. Ot + (Go. N]WP . »). (1.30)
Verg(wk)
Here (y, Z) is the scalar product between the vecjfor: (¢1, &0, ..., &) and the weight
y € Ig(wy); ¢ are eigenvalues af (0) and we suppose that they satigfy# ¢; for k # j.
The components of the vectotsand gg = (o1, ¢o2, - - ., ¥o-) provide the 2 (complex)

parameters directly related to the minimal set of scatteringTatd L (0), see formula (2.15)
below; 'y (wy) is the set of weights of theth fundamental representationme””(Z, y) are
t-independent functions which are defined in section 3 below. Thus the right-hand side of (1.3)
like the right-hand side of (1.2) is invariant and at the same time is explicitly parametrized.
This fact allows us to calculate explicitly the large-time asymptoticg(of:

lim G =51 = g5 +B*. (1.4)

Itis a well known fact [15, 16] thal* = wo(3~) = —2¢, wherewy is the Weyl group element
which maps the highest weigh, of the kth fundamental representati®(w;) of g into the
corresponding lowest-weight vectof . We provide explicit expressions fﬁft as functions
of ¢ and also show that

BF() = B~ (wo(()) G = wo(@y) = Go. (1.5)
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In fact the solutions to the CTC related to a certain simple Lie alggionay be derived
in two ways. The first one is to cast the solution (1.2) in the form

(e 2O = 3 (@] V]y))2e 2En (1.6)

y el g (wy)

and then try to evaluate the matrix elemefag|V |y) in terms of the scattering dafg. This
requires the explicit construction &f for each of the fundamental representati®isy ) of g.

The second possibility which will be used below, is to start with the well known solution
of Moser [4] fors/(N) with conveniently chosev and impose on the scattering data the
involution that restricts it tgy. Obviously both solutions must coincide. The proof of this fact
is also one of the results in the present paper.

In the next section we introduce the notation and analyse the properties of the fundamental
representations of the classical series of simple Lie algebras and derive some useful relations
between the matrix elements of the typical and the other fundamental representations. In
section 3 we prove formula (1.3) for each of the classical sediesD,. In section 4 we
also extend the results for the large-time asymptotics ofAh&CTC solutions to the other
classical serieB3,—D,. We also exhibit some ‘irregular’ solutions for tl®,,.; algebras
whose asymptotic regimes at— +oo are qualitatively different. We also provide some
interesting examples of bounded and periodic solutions and analyse the relations between the
solutions for the algebraB,4, B3 andGo.

2. Preliminaries

In what follows we shall use the so-called ‘symmetric’ Lax representation for the CTC
model (1.1):

r

L(t) =) (biHi + ax(Eq, + E_4,)) (2.1a)
k=1

M) = Zak(Eak —E_,) (2.1b)
k=1

whereq;, = e~ @*)/2 andb;, = 3dg,/dr. Forg = si(N) we haveq, = Je@—w/2_ |t
is well known that to each roat from the root systena, C E” one can relate the element
H, of the Cartan subalgebitac g. Analogously, tog(r) = Req(¢) +ilmg(t) € b there
corresponds the vectgiz) = Reg(t) +ilm g(¢), whose real and imaginary parts are vectors
in the root spacé&’.

The integrals of motion in involution for the CTC model are provided by the eigenvalues,
& = Kk +ing, of L. The solutions of both the CTC and the RTC are determined by the scattering
data forL(0). When the spectrum df(0) is non-degenerate, i.g, # ¢; for k # j, then this
scattering data consists of

TE{C]_,...,@‘N,V]_,...,I’N} (22)

wherer, are the first components of the corresponding eigenvectorsf L (0) in the typical
representatiorR (w;) of g, N = dim R(w,). If we combine all eigenvectors® as columns
of the matrixV thenr; = Vy and
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It is known that the eigenvectors of symmetric matrié€8) with a non-degenerate spectrum
can always be normalized, i.e. following [4, 11, 12] we require that

N
WP ) =S (V2=1  k=1..N (2.4)
s=1

and beside¥” = V1. Equation (2.4) determinesg up to a sign.
From (2.3) it follows that

G(t) =e 20 = yeg22ty-1 (2.5)

and we can rewrite (1.2) in the form (1.3) with

Bar@®) = Y ((ex|VIy)Ze2En, (2.6)

Verg(wk)

Thus our aim will be realized if we obtain explicit expressions for the matrix elenteptg |y )
of V in thekth fundamental representation in terms7ofvhich is determined by the spectral
data ofL(0) in the typical representatioR(w1) of g.

The eigenvalues df(0), and especially their real parktg, which can be calculated directly
from the initial conditions as will become evident below, uniquely determine the asymptotic
behaviour of the solutions [20]. We will use this fact extensively for the description of the
different types of asymptotic behaviour.

The minimal set of scattering data fer~ s/(N) is obtained from (2.2) by imposing on
T the restrictions "} _, & = 0 and

N
2=1 (2.7)
k=1

which follows fromV7 = V-1, Therefore, one may consider s, the set

Ta, =1{01, ..., N QoL - - - » Pon} N=r+1

. 1Y (28)
Yok = |nrk2 — N;Inr?
Although the number of elements #y, is 2N (instead of 2 = 2N — 2) it is obvious that
only 2r of them are independent.

For the other classical series of simple Lie algebras the elements (@f2) satisfy
symmetry relations, namely [20]

o=~ k=N+1—k (2.9)
e = e 10 Wy (2.10)
fork =1,..., N whereN is the dimension of the typical representati®w;) and the value

of g1(¢) att = 0 is determined through the normalization condition (2.7). The coefficients
are time independent and are expressed in termg of ., ¢, as follows, see appendix A.

B, series:N = 2r +1. Note that in this case.+; = 0,

1 ﬁ 1 1_[ 1 (2.11)
wk = —F .
807 11 AC2 — AGE Z i A — A2
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and in addition to (2.10),

L1
rr2+l = e’ql(o) Wr+1 Wy+1 = | | E (212)
s=1 K

Inserting (2.10)—(2.12) into (2.7) we obtain a quadratic equation fot-eyp(0)), so it can be
expressed in terms df,.

C, series:N = 2r and
1 1 r 1
Wy = —— . (2.13)
4{]‘ 31:!. 4{32 - 4§‘k2 sl:!'l 4§k2 - 4{32
D, series:N = 2r and
k-1 r
1 1
Wy = . (2.14)
Q 452 — 4gf l:[l 4 — 42

Inthe lasttwo cases again e&pg:(0)) is determined from (2.7). The derivation of the solution
for the D, series requires some additional efforts. The main problem here is related to the
treatment of the spinor representations.

The proof of (2.11)—(2.14) is based on the study of the properties of the corresponding
matricesV and is given in the appendix A. Then one easily finds that the set of parameters

Ty =1{¢1. ..., & ot -+ - or) pox = In(re/rp) (2.15)

uniguely determine® (2.2), which in turn provides the full set of eigenvalues and eigenvectors
of L(0).

Next we will need a number of details from the representation theory of the simple Lie
algebras. In what follows bR, (w) we will denote the representationgtith highest weight
w; 'y (w) stands for the set of weights &f; (w). Often when the choice fgris clear from the
context, we will omit the subscript and will write simply{w) andR (w). We will also need to
introduce ordering not only in the root systexy but also in the weight syste®y (w). To this
end we will use a vectak in the root spac&’ such thaty; —y», I?) # 0 and(x — 8, I?) #0
for any two weightsy; # y» € T'g(w) and rootse # 8 € A4. Without restrictions we can

choosek, together with the vectorx = — ReZ to be in the fundamental Weyl chamber so
that(w — y, K) > O for anyy € I'g(w).
Let us now denote by, k = 1, ..., N the set of weights of the typical representation
I'y(wy) of g, namely
1 r+l
Ve =€ — —F—= ) € N=r+1 (2.16)
r+1 ~
forg~ A,,
ey for 1<k<r
Ve —eg for r+1<k<2r g ( )
forg~ C,, D,,
ey for 1<k<r
=140 for k=r+1 N=2r+1 (2.1&)
—ej for r+2<k<2r+1
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for g ~ B,: in all formulae abové& = N + 1 — k. The corresponding weight vectors specify
an orthonormal basis iR, (w1) and will be denoted byy;).

An important and well known tool to construct the fundamental representatignis td
make use of the exterior tensor product®gfw:). Indeed, the orthonormal basiS/iJ’iREl (w1)
consists of the weight vectors

V1) = Visi,.ic) = [Vis A Vi Ao o A Vi) I =iy, iz, ..., ik} (2.17)
with1 < i3 < iz < --- < ip < N, the weight corresponding to (2.17) is obviously
Vi=VYutvipt -ty (2.18)

Here and in what follows we shall use the one-to-one correspondence between the set of indices
I and the corresponding weight and weight vectofy;).

Forg ~ A, all fundamental representations are, in fact, exterior powers of the typical one
R(wy):

R(wy) = A*R(w1) (2.19)

fork=1,2,...,r = N —landy, = y,* where the upper indekmeans tha,* e I'(w).
We remind also other well known fact, namely thanhbiR (w1) we have

® 1 2 ... k
(VI Y =mAve A ARIVIVE AV Ao Ay =V :

11 12 ... I
JioJ2 ook
o]
11 12 Lk

is the minor of the group elemerit € & determined by the intersection of the rows

(2.20)
where

J1, jo, .-, Jx With the columnsiy, io, ..., i,. Thus given a group elemefmt € SL(r + 1)
in the typical representatioR(w;) one can construct its image for each of the fundamental
representation® (wy), k =1,2,...,r.

Let us now explain how this can be done for the other simple Lie algebras of the classical
series. To this end we shall make use of the well known facts about the root systems [24, 25]
of g and about the tensor products of their fundamental representations, see [26].

Let us now consider th8, series. Then we have

N R(w1) = R(ay)

for k=12...,r—1 (2.21)
N'R(w1) = R(2w,)

where
wy =e1text---+e a),-:%(€1+€2+~-~+€,-). (222)

Herew, is the highest weight of the spinor representatioBof Therefore, the relations (2.20)
alsoholdforg >~ B, withk =1,2,...,r — 1.
Another well known fact is that the symmetric tensor produciRed,) is generically
reducible and
/4]
R(@,) ® R@y) = R(20) & 3 R(@r—4i1) ® R(@r—41) (2.23)
i=1

i=

wherewg = 0 andR (wy) is the trivial one-dimensional representatiorgof
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We now have two possibilities to introduce a basi®i2w, ). The first one isto use (2.17)
and (2.21) like above. The second possibility is to argue Biat) ® R(w,) is spanned by
S

r r 1 r r r r
v @y and  —(Iy" @y + 1y e@y™) (2.24)

V2
Wherey,(’) € I'(w,) are weights of the spinor representation®)f. Obviously they have the
form

r r
,y[(r) — %Zo’kek = %Zyik (225)
k=1 k=1

wheres, = +1. The corresponding sefs(and /) now must be special in the sense that:
(@r+1¢1;(b)ifi, € Itheniy =N +1—i; ¢ I.Inother words] does not contain pairs
of ‘conjugated: indices. To the weight vectgr”’ ® y,”’) there corresponds the weight?
which can be obtained from:2 by a Weyl group transformation. This means thef' ® y,”)

belongs to the representati®{2w, ) in the right-hand side of (2.23). Thus we find

1 2 ... r -
14 . . . =<2wr|v|2V1 )

11 12 ... 1p
r r r 2
= (@0 @0 V" ® ") = (( VIy)". (2.26)

Next we choosgy >~ C, series. It is well known that the exterior products Rfw;)
generically are reducible, namely

A R(w1) = R(wx) ® N ?R(w1)
(2.27)
wy =e,text---+e for k=2,...,r

but the relations (2.17), (2.18) and (2.20) also hold §or~ C, with k = 2,...,r.
Equation (2.27) reflects the existence of a non-trivial invariant subspaeéRiiw;) (see
(24])

N N

€)= > DAy = Y Stnlve Av) (2.28)
k=1 k,m=1

wheres is the matrix entering into the definition of the symplectic group (see (A.5) below);

namely

XeSp@2r) <« SxTst=x1 (2.29)

It is easy to check that due to (2.29) we ha¥g) = |c) for any elementX € Sp(2r).
Thus we establish that determines the one-dimensional invariant subspaceR(w1) =
(Cle)) & R(wp).

Let us now analyse the weights in the weight systéhie,) and their multiplicities.
The highest weight; + --- + ¢; has multiplicity 1; the corresponding set of indices is
I = {1,2,...,k}. Let us consider next the weight;y = e; + --- + e;,_p; to it there
corresponds each of the following sets of indi¢es {1,2,...,k— 2, p, p},k—1< p <r.
Therefore, toys) there corresponds the subsp&ag/:)) C A*R(w;) which is spanned by the
vectors|yy A ... A vk—2 A ¥p A yj) and has dimension divi(y)) = r — k + 2. Atthe same
time the Freudenthal formula shows that the multiplicity@f = e1 +- - - + ex_2 in R(wy) iS
r—k+1. This difference is due to the fact thatlii{y 1)) there exist a one-dimensional invariant
subspace determined bys A ... A yi—2 A ¢). The same argument can be applied to each of
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the weightsy;, = wy) wherew is an element of the Weyl group. Indeed, it is known that
the Weyl group preserves: (a) the lengths of the weightsiig, v1)) = (v, (1) =k —2;

(b) the multiplicities of the weights. In fact, the Weyl group is isomorphic to the group of
permutationss,. of the indiceq1, 2, ..., 2, 1}; therefore, instead of looking at the transformed
weighty;, we may consider the corresponding set of indices which can be obtained from
by applying a specific element &h,.. This analysis can also be continued by considering
weights of lengtlk — 4, e.9.y2) = e1+- - - ex—4. Skipping the details we formulate the result,
namely

A R(@1) = R(@y) & (Cle) A (AZR(w1)). (2.30)
It remains only to note that from (2.20), (2.30) and fréffr) = |c) there follows

1 ... k%
(Wl VIyg Ao Ay ) =V .
11 ... I

= (| VIy) + plax| Ve A yp)
= (x| V]y ) (2.31)
(k)

wherep is some constang;,™ € R(wy) andyy € A=2R(w1). In the last line we also used
the fact that the representatioRéw; ) andA*—2R (w1) span mutually orthogonal subspaces of
A R(w1).

Finally, letg >~ D, series. Then we have

AYR(w1) = R(wy) for k=1,2,...,r—2 (2.32)
AN R(01) = R(wr-1+ ) (2.3%)
A" R(w1) = R(2w,) & R(2w,_1) (2.3%)
where
wy=e;tex+. . -+e for k=12,...,r—2 (2.33%)
wy_1 = %(el tert---te_1—e) (233))
Wy = %(€1+€2+"'+er,1+€,«). (233:)
From (2.32) and (2.33) we find that the relations (2.20) also hold fgr>~ D, with
k=1,2,...,r — 2. Let us now analyse the spinor representatiffiteé, 1) and R(w,)
of D,. Itis known [26] that
[r=1)/2]
R(w;) ® R(w,-1) = R(@,1+0,) @ Y R(wr—2i-1) (2.349)
i=1
[r/4]
R(@,) ® R@r) = RR0) & 3 R(@r—4). (2.3%)
i=1

where® denotes the symmetrized tensor product &iey) is the trivial one-dimensional
N
representation aof.
The basis iR (w,) ® R(w,_1) is determined byy” ® v/ ") wherey” € I'(w,) and
yv Y € D'(w,_1). The sets of indices = {i1, ...,i} andI’ = {i}, ..., i} are related to the

weightsy,” andy, " by

r r r r
r—1 1 1 1 1
')/[(/’ ) =3 Zak/ek =3 Z]/,"( y](r) =3 ZGkEk =3 Zyik (235)
k=1 k=1 k=1 k=1
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whereo; ando; take valuest1 and

r r
[Joi=-1 and [[oe=1 (2.36)
k=1 k=1
Let us now consider a pair of weights” andy,’ " such thaw, = o for all but one value
ofk,i.e.I N I' = {j, ..., j1}. Thenthe vectors,” + /" andw, + ,_1 have the same

length and one can check that they are related by a Weyl group transformation. Therefore,
") )

ly,” ® y,, ) belongs to the representati®{w,_1 + w,) in (2.34a) and
1 2 ... r-1 . .
o . = (@ +o VY™ +y")
11 12 ... ly—1

= (1l VIy o VIy"). (2.37)

Finally, the spinor representatidh(w, ) is considered quite analogously to that of BBecase.

There is only one additional fact that should be taken care of: now the weightn®d 2o,

have the same length but are related by an outer-automorphism rather than by a Weyl group
element. In order to separate the weights belonging to the mo#tiBes.) andR (2w, _1) we

need projectors onto each of these invariant subspace€sitw,) in (2.3Z). As we shall see

below, we will need to sort out only the weights of lengtivhich are given by either,2’ "

or by 27/,(’) . The projectors which will separate these two types of weights can be constructed
by using (2.36) and the fact that = —¢; the matrix elements of these projectors are given

by

. N 1( {182... 4 )
= f=*. =14+ = ). 2.3
fr=Ffini 5 it L ( )

Indeed, it is easy to check now that
-1 — (r — -1 -1
i =y =0 Ty =" frys =y, (2.37)

Thus we obtain the relation

. 1 2 ... r ) a2
JiipiV o T (2w, [VI2y;7") = (r VY, )7 (2.3m)
1 @2 ... i

From (2.38)—(2.3%) we find the necessary expressions(or_1|V |y, ") and(w,|V|y")
through the minors oV, see (A.14).

3. The solutions of the CTC revisited

We will now analyse the structure of the solutions to the CTC for each of the classical series of
Lie algebras. Our aim will be to write them down in the form (1.3) and calculate the functions
W® (¢, y) for each of the classical series separately.

3.1. TheA, series

It is well known [4, 6,12, 33] that the solutions in this case can be expressed through the
principal minors of the group elemedt(s) (2.5). Using the Binet—Cauchy formula, or
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equivalently (2.20) and (A.3) we obtain the functions

N
Ar(t) =) rie (3.1)
k=1
Acty= > rlrk. rRe e Wiy iy, ) (3.2)
i1<ip<---<ij
N
Ay() =] ]r*w3@,2,...,N) = e VO (3.3)
s=1

which are proportional to the above-mentioned principal minor@@b. Here¢y, ry are the
scattering data of the Lax matrix0) introduced in (2.2), (2.7) an@; (¢) = W(iy, i2, - . ., ix)
is the Vandermonde determinant:

Wi@) = Wiz ....io =[] 2& —g). (3.4)

s>p;s,pel

Note that each of the factors in the right-hand side of (3.4) can be viewed as the scalar
product(Z, o) wherea is an appropriately chosen roat € Ag. This and the fact that
(E, wol(ar)) = (wo(Z‘), o) ﬁmake it easy to intfoduce ina rlatural way the action of the Weyl
group elementvy on W, (¢), namelywg : W;(¢) — Wi(wo(Z)).

The solution of the corresponding CTC is then given by

(1) — q(0), wp) = In Ay (1) (3.5)
or
g(1) = q1(0) + In Af:f()t) (36)
with Ag = 1 andg;(0) defined by (3.3).
For further convenience we introduce the functions
Bi(1) = €10 A1) (3.7)

and rewrite the solution to the CTC in the form

(q(1), wx) = In B (2). (3.8)

Now introducing the set of variables (2.8) and taking into account &4 easily cast
the solution (3.8) into the form (1.3) with

But) =By =Y. exp(@(), yO)WEOW (L 2,...,N) 2N (3.9)
vV el (@)
G(1) = (@1(0), ..., N (D) B() = =201 + G (3.10)

wheregg, were introduced in (2.8). Another possibility is to us@) = 201+ @o With
2

B 2 T
Yo = Pok —INwy — —INnW(@,...,N) =¢q1(0) +In =
N Wi

k—1 1 N 1
= 3.11
o 11 26— &) SDM 26, — &) (311)
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which gives

N
Ba,.x(t) = Z Pizlpizz~~-Pizkefz(g"ﬁ"&{’k)tle(i)wil--‘wik (3.12)
i1<ip<---<i,

with p, = €%, Then finallyB4,.,(¢) can be rewritten as

Baux®)y= > exp(é®), v )W, v (3.13)
v el (@)
with
WOE, m) = wy WOC ) =wEO[[w, k=2.3.....r (3.14)

sel

Now it is more natural to consider

T4, =1{1, .-, N, @01, - - - » PON) N=r+1 (3.15)

rather than (2.8), as the minimal set of scattering data for4halgebra case. Indeed, the
elements of (3.15), like the ones of (2.8), naturally satisfy the identities

N N
G=0=0 Y gu=($¢=0 (3.16)
k=1 k=1
€ = e; +--- + ey, Which is directly related to the fact that all the rootsAf also satisfy
(a, €) = 0.
However, equation (3.15) also has the advantage that imposing on its elements the
symmetry condition (2.9) and

o — k=N+1—k (3.17)

one can obtain the minimal set of scattering data forBhendC, series.

Indeed, let us chooge~ A, and let us impose 0fy, (2.9) and (3.17). First, note that
from (2.9) and (3.11) withv = 2r + 1 we immediately find thab, takes the form (2.11) for
k=1,...,rand(2.12) fokk = r + 1; besides one can check that = wy.

Next, the condition (3.17) withy, ; = g1(0) +In(rf/wk) leads immediately to the relation
(2.10). Expressing from ify1(0) as In(wy/(rerz)) we easily obtaingg, = In(r/rp) for
k=1,...,randgg,+1 = 0. Thus we showed thdi,, with (2.9) and (3.17) reduces to (2.15)
for the seriesB,.

The same procedure appliedZg, , provides (2.15) for the seriesS,.

3.2. TheB, series

The solution is obtained from the one for thg, series by imposing the relations (2.9)—(2.12).
Due to this only the first of the functionsA,(¢) in (3.5) are independent. From the analysis
in section 2 we see that only the expression4p(t) requires additional special treatmentt,
see (2.26). Thus we find

Ac(t) = e+ Op, (1) (3.18)

for k=1,...,r—1
A (1) = e OB, (3.19)

T This is related to the existence of the spinor representation.
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whereB, (r) are of the form (1.8),

Baty= Y exp(é®), v )W, v (3.20)
¥V el (@)
with
W@y =we WO =wEO[Jws @0 =-20t+Go (3.21)

sel

fork=1,...,r—1and

WOEC. 7"y =wi @) [ w2 (3.22)
s=1

Here W, (Z) is the Vandermonde determinant (3.4). We remind the reader that to each weight
y,(k) € I'(wy) there corresponds an ordered set of indites {i; < --- < iy} and thatw,
are defined by (2.11) and (2.12). Each semiquely defines/\*. If the weighty* has a
multiplicity greater than 1 then there exist several sets of indices relatg((.‘i)td:or example,
the weighte,+- - -+, ande; +- - - +¢;_1 in I (wy) have multiplicities 1; the corresponding sets
ofindicesardl, 2, ..., k}and{1, 2, ..., k—1, r+1}, respectively. The weigla +- - - +¢;_»,
however, has multiplicity — £ + 2; one may assign to it each of the following sets of indices
{1,2,...,k— 2, p, p} wherek — 1 < p < r. Analogously to the weight; + - -- + ¢;_3

ande; + - - - + ¢;,_4 With multiplicities » — k + 3 and ("f“) one can assign each of the

S€tS{l,...,k—3,p,r+l,13} with k — 2 < p<r and{l,...,k—4,p1,p2,ﬁ1,ﬁ2} with

k — 3 < p1 < p2 < r. In other words, we find that the number of sétsorresponds to the

number of weights provided each weight is counted as many times as its multiplicity.
We note thaiB, (¢) can also be written in the form

But)= Y 2cosig®), v/ ) WP, v+ Y whE. v ) (3.23)
(k) k)
v, >0 Ly, =0
where the second sum runs over the sets of indices corresponding to the weight equal to zero.
For the B, series these sets are of the form
{pl»-~'1ps»ﬁls"~’ﬁ5} for k:2s
and

{p1,...,ps, v+ 1 p1,..., ps} for k=2s+1.

Formula (3.23) reflects the fact thBtwy) is symmetric in the sense thaty'f") € I'(wy)

then—y© = wo(y"’) € I'(wy). One can also check that

WOC, ) = WO o), woly,) = wR @ y®)  T={i.....0a).

3.3. TheC, series

Remark 1. When one imposes the symmetry condition (2.9) and (2.10) omthe; CTC

the corresponding system of equations is slightly different from (1.1). The difference consists
only in the coefficient of the term&-*~ which comes out as, /2 instead ofx,. The extra

% factor is easy to take into account and therefore fotGheeries the relation betweep(r)
andBy(¢) is slightly different, namely

Bt) 1
AR In2. (3.24)

gr(t) =1In
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Now we insert (2.13) into (3.1) and (3.2) to obtain the solutions forGheeries. Thus
we obtain

A(t) = OB (1) (3.25)
forallk =1,2,...,r where
Bet)= Y exp(@(). vii) WO @ vii) @) = =201 +Go (3.26)

i1<---<ik
- k
W, y) = wi WO, iy i) = Wiz, ... i) [ Jws (3.27)
s=1
andy;, ;, is a weight inA*R(w;). From our analysis in section 2 (see (2.30)) each of the
weightsy,, i, = yi, +--- +, can be splitintdy;,._.) = [y\") + ple A yr) (see (2.31))
and we have
1 ... %
(V¥ = V { N i } = (el V1y"). (3.28)

This means that the summation over all sets of indigesi, < --- < iy in (3.26) reduces to
the sum over the weights @f(w;) only,

B =B =Y exp(30).yY) WO 1) (329)
(k)

v, €l ()
WO, vy = WO [ Jws k=2,3,....r (3.30)

sel
i.e. we cast the solution in the form (1.3). Besides, as foRhseries agaim)o(y,(k)) = —y,(k)

so we have
But) = Y 2cosi@®), v, ) WO, v+ Y whE, ). (3.31)
y,(k>>0 I:yl(k):O

We note that the sets of indices correspondir;g“fb: Oaregivenbyps, ..., ps, p1,---, Ps}
for k = 25 and by the empty set fdr= 2s + 1.

3.4. TheD, series

There are some differences in treating this case due to the fact that the Lax b(@yritA.8)
is not a tridiagonal one. Nevertheless, the Moser formula (3.1)—(3.3Y fer 2r, together
with the corresponding involution (2.9), (2.10), (2.14) provides the solutidn,taDue to the
somewhat different structure of the eigenmatrixve find that the first — 1 functionsA, ()
are given by (3.1), (3.2) and onl, (+) must be replaced by [20]

Aty= Y rk. o rlexp(=20, +- -+ )0) (fir )P Wi, i), (3.32)

i1<---<iy

Besides, theD, algebras have two spinor representations which require additional care.
Note also that due to (A.14) the projec'gf;if___ir (2.37) enters in a natural way intd,. Thus
in the right-hand side only the terms related to the weight® (fw,) give non-vanishing
contributions.
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Let us introduce the variables (2.15) and along with (3.7xfer 1,...,r — 1 let us put

B, (1) = €1©@ A _(r); then we can rewrite the solution for tH2. series in the form
(G (1), wp) = In Bi(t) for k=1,....,r—2 (3.33)
(é(t), wy—1t wr) =In Brfl(t) (5(1)1 20)1) =In Br(t)~ (334)

Our analysis in section 2 shows thagt = w; and

Bi(t) = By (¢ for k=1,...,r =2
k(1) = B (1) ) (3.35)
B, _1(t) = B,—1(t) B, (1) B,.(t) = B (1)
with
By= > exp@®). " )yWRE, ) for k=1,...,r (3.36)
v, €l (@)
Here
WO =we @) = =21 +Go (337)
WO C, ) = Wi [ ] ws k=1,....r—2 (3.38)
sel
WOOE, ) = o W @) a=0,1 (3.39)
and the set of indices = {iy, ..., i,} in (3.39) is such that it determines uniquely the weight
y,(”“) € I'(w,—,) in the corresponding spinor representation. In addition,
(G1), 0r—g) = INBr_a(0). (3.40)

The explicit solutions for RTC with the simplest choices fowith rank 2 in invariant
form were proposed in the monograph [11]; they coincide with the particular cases of the ones
given above provided a proper identification of the variables is performed. Here we choose to
provide as examples the solution to thg case and its relation to the solutions 8 andG,.

Example 1. Letg ~ D4 = so(8). Then it has three eight-dimensional representations:
R(w1) and the two spinor oneRB(w3) and R(w4). The representatio® (w;) is of dimension
28. We also remind the reader thay has an outer-automorphism of order three which
interchanges the eight-dimensional representations; more precisely,

V] .01 —> 03 —> 04 —> (] V102 = 02 (3 41)
V1. W1 —> W3 —> W4 —> W1 V1w = 2. .
The equations of motion for the4-CTC have the form
qri = €N Qo = €792 _ gl
Gan = —€13P + gli—43 4 g 374 Gay = —€14B + g 3, (3.42)
The solution is provided by
Ba(1)
(1) = In By (1) g2(t) =In 2
Bil) (3.43)
Ba(t)By(t Bay(t '
ga() = In B2OBAO Ly~ BaO

Ba(1) Bs(1)
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where
4

Bi(t) =2 Z wy. coshgy () (3.449)

k=1

4 4
Ba(1) = 82 wiw; [(¢; — &)? coshlg; + ;) + (£ + ) coshlp; — ¢))] + 162 wie?
i=1

i<j

(3.4%)
4 1 _
Ban)=2""]] 2 {W(1,2,3,4) coshZ (g1 + ¢z + @3 — ¢4)
i<j 5 5j
+W (1, 2,4, 3) coshy (p1 + 92 — 93+ ¢a)
+W (1, 3,4, 2) cosh} (1 — @2 + 3 + @a)
+W(2,3,4,1) cosh}(pr — g2 — @3 — ¢a)} (3.44)
SEET
Bat) =2 | 5= {W(1 2,3 4) coshj(p1 + 92 + 93 + pa)
i<j % — 5j
+W (1, 2,4, 3) cosh(¢1 + 92 — 93 — ¢4)
+W (1, 3,4,2) cosh (1 — ¢2 + 93 — ¢2)
+W (2,3, 4, 1) coshi(p1 — 02 — 93+ ¢a) } (3.44)
@i (1) = =285t + ok (3.44)

We also notethat =5,3=6,2=7,1=8; W(, j, k, [) are defined by (3.4) and in both the
summation and the products, denoted above by;j we mean that and j take values from
1to 4.

It is well known that the automorphism maps not only the fundamental weiglis
as in (3.41) but also the whole sets of weights, ;0. I' (w1) — T(wsg) = I'(wa). Using
the definition ofB; () and the properties of the scalar produgtsviy ) = (v;*¢, y®) we
obtain

Bu(t; £, §o) = Ba(t; Uilz, vy *00) = Ba(t; V1, v16%0)
By(t; ¢, @o) = Ba(t; v1Z, v160).
These relations are compatible with (1.3), i.e.

(3.45)

G (1), w3.4) = INBaa(t; £, o) = (G(1), vitwr) = In By(t; vEE, vilo).

Example 2. Next we will derive the result faBs starting from theD, case. It is well known
that B3 can be obtained fronib, by imposing a symmetry condition with respect to the outer-
automorphism, of D, defined by

oy =a; fork=1,2 Vo3 = 04 Voots = a3. (3.46)
The symmetry with respect tg reflects on the scattering data of tii, case by
¢2=0 @os =0 or @a(t) = 0. (3.47)

To the end of this example, when referring to the variables relatdd,teve will assume these
conditions to be imposed and will denote this fact by an additional ‘prime’; the corresponding
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variables for theB; case will be denoted by the same letters with an additional ‘tilde’. Then
inserting (3.47) into (2.14) we can write
w, =2, k=123 w) = g (3.48)
In analogy with (3.45) we have
By(t: £, Go) = By(t; val . vago) (3.49)

and after imposing the,-involution symmetry, namel§g (r), wy) = (G(¢), vowy) for eachk

we havey, = 0. Indeed, using (3.47) one can find th{(z; Z @o) = By(1; E @o) Which leads
to g, = 0. In this wayg;, g, andg; give us solutions of a system, equivalent to thaBef
More precisely after some rearrangements we find that

By(t) = 2B4(1) B,(t) = 4B2(1) By(t) = By(t) = 2%2B3(1). (3.50)
Comparing (3.50) with (3.43) we see that
q@) =g +n2 k=123 qa(t) =0 (3.51)
where
3 . 3 Ba(t) 3 B2(1)
=InB =In—= =In="". 3.52
q1(t) = In By (1) g2(t) =1In 5.0 g3() =1In 5,0 (3.52)

The condition (3.47), or equivalently,(r) = 0 when imposed onto the system of
equations (3.42) leads to a system dg(1), k = 1, 2, 3 slightly different from theB3-CTC.
The difference is in the coefficient in frontafe~@*» which comes out with an additional
factor of 2. This factor is precisely cancelled if we go over to the variafl€s.

Quite analogously, but with more technicalities, one can prove that the symmetry with
respect to the outer-automorphiamof D, will reduce theD, solution to that forB, _1; more
precisely, using an analogous notation as above, we can write

By(t) = 2By(t) fork=1...,r—2 B._,(t) =B.(t) = 2" V2B, 1(1) (3.53)
and
4@ =q@)+In2 fork=1,...,r-1 q.(t)=0
3 B2 (¢ 3.54
g =1In ~Bk(t) fork=1,...,r—2 Gr—1() =1In f‘—l() ( )
Bi_1(t) B, _2(t)

In deriving (3.50) we see, that due ¢g = 0 two of the terms in3;(¢) combine together;

this corresponds to the fact thlttg,(w1) has only seven weights, whilg,, (w1) has eight.
Analogous, but more complicated combinations and cancellations take place in the proof of
(3.54).

Example 3. The case witlG, can be obtained fron, after imposing a symmetry condition
with respect to the outer-automorphiam(3.41) of D4 of order three. The restrictions that
v1 imposes on the scattering data are

4=0 {1— 0 =103 9oa=0 ®o1 — Y02 = P03 (3.55)
or, in other words,
@ =¢ @) = do

Then one can check that due to (3.4%)) is invariant with respect ta1: v1(g(t)) = g(t)
and, consequently, is an element of the subalgéiyra
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Indeed, if we average the set of simple rootdafwith respect to the action af; and
also the system of equations (3.42) then we obtain the system of simple rG6ts of

Br= (o1 +az+ag) = L(er — ez + 23) Bo=az=ex—e3 (3.56)
and the system of equations
01, = @B Qs =& QP _ g (@) (3.57)

which is slightly different from (1.1) folG,; namely the variables, let say;, g5 and
q5 = —q1 — q5, entering in the original system (1.1) f6¥, are

q1(1) = Q1(t) —2In3 q;=02—1In3 (3.58)

The solution to (3.57) is provided by
[ Bat: 2. go)
Ba(t; ¢, o)

whereB; (¢) are obtained from (3.44a) and (3.44b) with the additional restrictions (3.55);
namely, we have

01 =INBi(t; 7, Go) 0= (3.59)

Bi(t; , o) = 2bob1 [Q; & coshgp; + 51; ‘s coshg, + {1; L2 cosh<p3] +2b2
1 2 3

¢ cosh01, §) +§_§cosr(§1, ) +§_§cosf(§2, )
$283 C2— {3 $1ls L1+ 83 162 O+ &

Ba(t; ¢, go) = bob? [

St cosh(10, §) + 3ty cosh(11, ¢) (3.60)
t182 $183
3(¢2 — ¢3) > a} 2 <1 1 1)
+—————"cosh21, +12b5b | — + — — —
$283 L) ot i3 & &
1 1

b == b = ———

* T B+ LG+ 8 (&2 — Ca) YT 800

where byfj we denote the roa3; + jB, of G,. Obviously each of the terms 8)(¢) in (3.60)
can be related to a weight of the corresponding fundamental representatioy) of G,; so
again we cast the solution in the form (1.3).

We summarize the results of this section by the following remark. One can view the
solutions of the CTC related to the classical sefesC, as being obtained from the Moser
formulae combined with the corresponding constraint on the scattering data. The @se of
can be obtained likewise if we take the Lax matrix to be pentadiagonal as in (A.8).

On the other hand, starting from a Lax matrix related to each of these series we can always
apply Moser’s approach and derive as a result the functipfas, k = 1, ..., N. In order for
both answers for the CTC-solutions to be compatible one needs to show that

g (1) = —qi (1) k=N+1-k (3.61)

whereN is the dimension of the typical representatiorgofEquation (3.61) can be derived
from the results in sections 2 and 3 and shows the compatibility of the two approaches to the
CTC solutions.
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4. Dynamical regimes and large time asymptotics

There are important differences between the RTC and CTC, especially in the asymptotic
behaviour of their solutions. Indeed, for the RTC, one has [4, 12] that, both the eigenvalues,
¢, and the constantig, (0), are always real-valued. Moreover, one can proveghat ¢; for

k # j, i.e. no two eigenvalues can be exactly the same. As a direct consequence of this, it
follows that the only possible asymptotic behaviour in the RTC is an asymptotically separating,
free motion of the particles.

The situation is different for the CTC. Now the eigenvalges= «; + in,, as well as the
constantsy, (0) become complex. Furthermore, the argument of Moser [4] does not apply to
the complex case, so one can have multiple eigenvalues. The collection of eigeryaktdks,
determines the asymptotic behaviour of the solutions. In particularjt ibat determines
the asymptotic velocity of théth particle. For simplicity, we assuntg # ¢; for k # j.
However, this condition does not necessarily meandhat «;. We also assume that the's
are ordered as

K1 < ko < -+ <Ky 4.1)

This ordering is known as the sorting condition. More generally it can be understood
as —k € Wp—the closure of the dominant Weyl chamber. Once this is done, for the
corresponding set d¥ particles there are three possible general configurations.

(A) Free-particle propagation (Moser case); them) have alinear-in-asymptotic behaviour
and—x is in the interior ofWp.

(B) Bound state(s) and mixed regimes when one (or several) group(s) of particles form a bound
state; then each group of particles oscillate around a common trajectory with a lirrear-in-
asymptotic behaviour; then(k, o) = 0 for some set of indiceks € Ips.

(C) Degenerate solutions when two (or more) of the eigenvajues ¢;+; = - - - are equal,
theng, (1) — qx+1(¢) have alogarithmic-in-asymptotic behaviour, i.e. the distance between
the particles grows as In

Obviously cases (B) and (C) have no analogues in the RTC and physically are qualitatively
different from (A).

4.1. Asymptotically free regimes

We begin with the first possibility from the above-mentioned free-particle asymptotics (the
Moser case). It is realized that if we require that all real parts of the eigenvejuae
pairwise different; i.e—k belongs to the interior of the dominant Weyl chambés:

(—K,a5) >0 s=1...,r 4.2)
while the imaginary partg, may be arbitrary.

Let us now consider the asymptotics for thg, B,, C, and D, series. Using the explicit
expressions foB, (¢) it is not difficult to evaluate their asymptotic behaviour for> too:

Biadt) = W@, ) €750 (1+ O(expFK 1)), (4.3)
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Here a)ff are the highest (lowest) weights, related through the Weyl group elemgnt
w; = wo(w, ) and
Ki= min ReC.y—o))=—& o)
yel(w)\w;
Ki= min ReC.y—awp)=— o)
y el (w))\wy

see appendix B. 4.4)

Note the natural way in which the two asymptotics are related bytheeansformation
of the Weyl group, namely

Biadt) = wo (B{ o) = W (€. wo(wy)) €70 eel)
= WO wo(?), w}) eWo@ed, (4.5)

More generally sincév ® (g y) depends only on the scalar products of the ty@ey) the
action of the automorphismg on W (Z, ) is given byW® (z, wo(y)) = W® (wo(2), 7).

The relations (4.3) and (4.4) are due to the simple fact that the leading exponesnt foo
(t — —o0) in By (¢) corresponds to the weight € I'(wy) for which the value of Re-¢, y)
is maximal (minimal). Since-k € W, this maximum (minimum) is realized when= w;
(respectivelyy = w;).

From the previous considerations we have

By (1) —~ 2(a, er)

qc(®) =1In B 2 o) In By (1) (4.6)

and consequently the asymptotigs of z}(t) fort — +oo are given by

Git) = =201+ o + Z InW® @, wh) (4.7)

ay, Olk)

r

Gat) = wo(—ZEt + o) + Z

= (o, « k)

In W® (wo(2), wf) (4.8)

up to terms falling off exponentially far— +oco. The explicit expressions for the components
qx(t) for the A, series are well known, see, e.g., [4,12,20]. For the other classical series of
Lie algebras we obtain

GEadl) = T201 £ g0 + B + O(67N) k=1....r (4.9)
with
k=1
=In 2t — )? Nf= min KZ*. 4.10
B (wk Q( Cs — Cr) ) e K ( )

The only exception to (4.9) and (4.10) is for~ D, with oddr, k = r andt — —o0;
then

r—1
Grad) = —26,1 + g0, +1n <w [T + 243)2). (4.12)
s=1
It has been known for a long time [15, 16] that for the RTC the asymptotic velodities
areﬁrelated by?:: wo(vY). In the complex case the analoguesdfare the complex vectors
—2¢ and—2wg(¢), respectively.
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Up to now we know of only one physical application of CTC as a model describing the
N-soliton train interactions [17—20]. Gaining insight from it we will interpretjR€&) as the
trajectory of the centre of mass of thth ‘particle’ (soliton). Besides each particle is complex
and possesses an internal degree of freedom. H2Res, = —2«; will be the asymptotic
velocity of thekth particle at — oo, while —2 Im ¢, = —2n; determines its asymptotic phase
velocity.

4.2. Mixed regimes foB,, C, and Do,

Our aim in this and the next subsection will be to consider the cases when two or more particles
form bound state(s); we will say that several particles form a bound state if they have equal
asymptotic velocities. In this subsection we consider only those members of the classical series
for whichwg = —id.

Bound state(s) are possible whe# is on the boundaries d¥p, i.e. if we have

—(u. k) =0 k € Ips (4.12)

wherelys C {1, ..., r}is a subset of indices. l,s = {m} contains just one index < r then
km = km+1 @and we will have a two-particle bound state.lff = {m,m +1,..., m + p} and
m+ p < rthenk, = ku+1 = -+ = kn+p and we have @p + 1)-particle bound state. The
cases when the largest indexijnis equal ta- should be considered separately; indeed, due to
the fact that the sets of simple roots for the different classical series differ only in the choices
for , these cases may lead to substantially different results.

In our previous paper [20] we obtained the large-time asymptotics for the two-particle
bound states in thd, CTC. Here we will briefly analyse more general cases when:

(a) g belongs to the other classical series and one bound state may be present, i.e. when
Lis={m},m <randlps={m,m+1},m+1<r;
(b) two bound states may be present, lig= {m, p},m+1 < p <r.

For brevity we will write down the asymptotics only for those compongpts) which differ
from the typical ones (4.9). We will limit ourselves to the cases when the mixed regime
contains two- and three-particle bound states only. The other more complicated regimes can
be analysed analogously.

Indeed, if fork € Ins we have(k, ay) = 0 then at least two terms ii; () may have
the same asymptotic behaviour. To our purpose it is sufficient to evaluate only the leading
exponents. Thus we find

Bias(t)=e<¢<f>ﬂwi>[w<">(2,w;t>+ > W(”)(a)+(9(e¢1<};*f)} (4.13)

€G3 (%)
where
hE _ i AP (P _ a0 ywp) 7 £
Koo = VeITIiQwD -2, “r 2l W) = e EWIE, ) F )
R . 2(a, wy)
GE@K)=1a>0, (,k) =0, +——L->1 (4.14)
g (o, @)

Tpi(@)) =T\ {0, 0, Fa.a € G, [K)}

The condition(a, ¥) = 0 ensures tha” only oscillates whem — o0, while the
third condition inG7 (¥) means tha, F « € T'(w)).
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We start with the simplest cadgs, = {m}, which contains several qualitatively different
subcases which will be listed below. In each of them it is possible to describe the sets of roots
Glf(fc') and to evaluate the estimating exponeﬁ;)é, for details see appendix B. It turns out
that G]jf(fc') =@ for p # mandG; (k) = {an}, G, (k) = G} (wo(K)) = {woley)}. In
what follows we will concentrate mainly on the asymptoticstfer oo; the asymptotics for
t — —oo we will obtain by formula (4.8). Therefore, the asymptoticﬁg]‘as(t) forp #m
will be given by (4.3), while fo3;, .(¢) we obtain

B}, o) = €YU [WI Gl + W () + O (K1) ] (4.15)

with the following result forK/" valid for any of the algebras in the classical series (see
appendix B):
K'Y= min [-2&,a)]. 4.16

" si(%.am)aéo[ ( g)] ( )
In other words, the minimum should be taken with respect to the simple sQdtsat are
connected ta, in the Dynkin diagram.

Now we are in a position to compare the asymptotic velocities of the particles and to

single out the structure of the bound states (if any). Since the asymptotic velogjts pfor
t — oo is equal to—2«; we just have to see what constraints{eq . . ., «,.} will be imposed
by —(k, a;) > 0,k # m and—(k, o,,) = 0. Forg >~ B,, C, andm < r we have

k1< <Ky = Ky < <Ky <0 (4.17)
forg ~ D,, andm < 2n — 1,m = 2n — 1 we have

K1 < <Km=Knt1 < <kom-1<—|kgu| <O (4.18)
and

Kl <o+ <Ky <Kmt1<--+<Kpy_1=koy <0 (4.19)

respectively.
Finally, forg ~ B,, C, andm = r we obtain

K1 <+ <kp_1<kr=0 (4.20)
and forg ~ D,, andm = 2n
Kl < e < K2I‘l*1 = _KZI‘I < 0. (4.21)

From (4.17)—(4.19) it is easy to see thatifor< r we always have one bound state of two
particles (nth and (z + 1)st); the rest of the particles go into a free asymptotic regime. If in
additionwg = —id, as we assumed in the beginning of this subsection, this bound state will
also be present far— —oo. Therefore, for this class of algebras we have stable two-particle
bound states for alk < r.

Form = r the situation is different. From (4.20) we see that the conditios, o) = 0
for g ~ B,, C, just means that theth particle has vanishing velocity. As for ~ D,
the condition— (i, az,) = 0 means that thé2n — 1)st and the @th particles have opposite
velocities. Therefore, forr = 2n no bound states are possible.

The next possibility is that the séis = {m, p}. There are qualitatively different cases
here: (a)(om, ;) = 0 and (b)(w., ap) # 0. Each of the values and p in case (a) can
be considered independently and to each of them applies the analysis already posed above.
In the generic casat < p < r we will have two pairs of bound states each containing two
particles; ifm < p = r then we have only one bound state of two particles. An exception here
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is the casgy ~ D,, andm = 2n — 1, p = 2n. The two rootsy,,_; anday, are obviously
orthogonal, but now the condition (4.12) leadxp = x2,_1 = 0 and as a result in this case
we have only one bound state consisting of two particles with vanishing velocities.

Let us now analyse case (b). For generic values 6f p < r what we find is a bound
state of three particles. One possible realization of (b) is to take m + 1 < r; then the
condition (4.12) leads to

KL< <Kp =Knptl=Kn+2 <+ Kps3 <+ (4.22)

i.e. the particles numbered lay, m + 1 andm + 2 move with the same asymptotic velocities
and form a bound state. Again we must look through all possibilities when case (b) takes
place and point out possible exceptions; such as, for example, the casg whBp, C, and
m =r —1, p = r. Equation (4.12) then gives _; = «, = 0, which means that this is a
bound state of two particles: thie — 1)st and the-th with vanishing velocity.

If g ~ Dy, andm = 2n — 2, p = 2n — 1 we obtain a three-particle bound state with
velocity ko, 2 = k2,-1 = k2, < 0. The last example related to this algebraiis= 2n — 2,
p = 2n which corresponds tey, > = k2,_1 = —k2,. This means that the particles 2- 2
and 21 — 1 form a bound state, but the lasitA particle moves with the opposite velocity and
is not part of the bound state.

Obviously the number of examples can be extended to includégetith more indices;
one can expect to have bound states with an increasing number of bounded particles. It is
not difficult to also present the explicit form of the asymptoticsq,iggs(t). The most difficult
part in this calculation is to determine the sets of ro@ﬁs@). We list these sets of roots
in appendix B for the classical series of Lie algebras related to thdigetsth one and two
indices. Indeed, if we choose~ B,, Ips = {r — 1, r}. Then the sets of roots

G:—l(’_é) = {Ol,-_j_, o1 ta, a1t Zar} G:(z) = {O[ra o1t o1t 20[,}
Then
e = €YD WOV o )+ WOV, )
WO g + ) + WO (g + 20,)] (4.23)

B} = €¥O WO, ) + W () + W (o1 + ) + W (a1 + 20,) .

r.as —
Now we have to insert (4.23) into (4.6). After some calculations we oktain= «, = 0 and

2:rfl

. _
4y _1.a8t) = =2in,_1t + o, 1+ IN ——————
e W2, o' )

2

r

9 as(t) = =21, + g0 +1n (4.24)

r—1
2p=W<1’)(Z,w;)+ip p=r—1L1r
i:p = W(p) (ap) + V_V(p) (ar_1t+ay)+ W([F) (ar_1 + 20(,«)

In this subsection we have presented various types of mixed regimes which could be
called regular. By regular here we mean that the number and the structure of the bound states
atr — —oo coincides with that for — oo. In the next subsection we consider the ‘irregular’
mixed regimes, which change qualitatively their structure during the evolution.
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4.3. Mixed regimes faD,,+1: ‘creation’ and ‘decay’ of bound states

The ‘irregular’ mixed regimes take place only for algebras for whigh# —id. This takes
place forg ~ A, andg >~ Dy,.;. At the end of this subsection we will explain why the
‘irregular’ regimes, i.e. the effects of ‘creation’ and ‘decay’ of bound states can be related only
tog >~ Doy, 1.

First of all we note that most of the bound states relatedip,, are regular. So are
the states corresponding Igy = {m} with m < 2n andl,s = {m, p} withm < p < 2n.
The formulae for the asymptotics in all these cases are quite analogous to the ones already
presented.

Let us start with the first ‘irregular’ case withs = {2rn}. This means that,, = x2,+1
and forr — 400

q;,as = F2ont F 2inzat £ o2, + ,32[,,’/(2)
q;:#l,as = —2k2,t — 2iNzp41t + Q02041 + ,3;:,,4/.1(5)

[W . ) + W (02 WD E . 3,,) (4.25)
W=D, wh, ;)

By (&) =In

WD wh 1)
W@ (Z, wh) + W) (az,)

Bylia() = In

andB; ' (¢), k = 2n, 2n + 1 are obtained frons;”’(¢) by using (1.5). Obviously at— —oo
the 2:th and the(2n + 1)st particles have opposite velocities, while for> oo their velocities
become equal. This situation can be viewed as ‘creation’ of a bound state.

The second ‘irregular’ case is witlys = {2n + 1}. This means that,, = —«y,+1 and for
t > Foo

qi,as = :F2K2nt + 2|n2nt =+ ©0,2n + ﬂg:n//(Z)
‘1§En+1,as = 2604t — 2in2u+1t + Q02541 + /3;;3:1(2)

[WEDE, wh 1) + WD (a0 [WE T, w3,) (4.26)

+11 3 =1In _
Ba, (£) TEETTR

W@D(E wh 1)+ WD (ag,40)

+1 3 —In _
132}1+1(€) W(Z”)(é', C()En)

and againg;”'(¢), k = 2n, 2n + 1 are obtained frong;”'(¢) by using (1.5). Now at — —oo
the Zith and the(2n + 1)st particles have equal velocities, while for~> oo their velocities
become opposite. This situation can be viewed as ‘decay’ of a bound state.

The next more complex situation is whég = {m, p}. Again we should consider two
distinct subcases, namely,,, @) = 0 and(e,,, ;) # 0.

In both cases we recover ‘regular’ asymptotics provigee: p < 2n; namely for such
choices ofl,s we have either two pairs of two-particle bound stategdjf, «,) = 0) or a
three-particle bound state (i, ,) # 0).

The ‘irregular’ cases with,,, «,) = 0 are of two types. The first one takes place if
m < 2nandp = 2n (p = 2n+1). Then fort > —oc0 (t — o00) we have two bound
states formed by the particlds:, m + 1} and {2n, 2n + 1}, while att — oo (t - —o0)
the second bound state decays and we are left with only one bound state. Quite different is
the situation whenys = {2n,2n + 1}. This corresponds t@,, = «2,+1 = 0, S0 this is a
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regular case but with onlgne bound stateermed by the particle&n, 2n + 1} with vanishing
velocity.

There are only two ‘irregular’ cases with,,, «,) # 0, namelylps = {2n — 1, 2n} and
Iys = {2n — 1, 2n + 1}. The first one leads ta,,_1 = x2, = k2,41 < 0 and to the following
asymptotic behaviour Qf; (1), k = 2n — 1, 2n and 2 + 1:

6];;_1,35 = T2, 1t F 22017 £ Q0.20-1+ B 1
q;,as = F2,-1t F 2inont £ Q0,20 + B
Goiras= —2k2u—11 — 2inzus1t + Q02041 + Boia

S5 @) (I OWETE w5,)
W2, w3, ) o 1(0)
W(2n+l)(27 “’Zml)

S50 (L)
Q) = WP 0h) + WP () + WP (-1 + ).

Bs =1 (4.27)

1+
Br,1 =1In

1+
B = In

From these formulae we find that for~ —oco we have a two-particle bound state formed
by (2n — 1)st and 2th particles, while for — oo the (2n + 1)st particle ‘joins’ them and we
have a three-particle bound state.

The case withys = {2n — 1, 2n + 1} is analogous: the only difference is that at- —oo
we have a three-particle bound state formed by(Bae— 1)st, 2:th and(2n + 1)st particles,
while forr — ocothe(2n+1)st particle ‘separates’ from them and we are left with a two-particle
bound state.

Let us analyse this situation on the basis of our remark at the end of section 3. Let us
first explain why such an irregular solution is not possible for heseries. In this case we
haver + 1 particles and the sets of asymptotic velocitiesfer oo and:r — —oo differ only
in the ordering: {—2x,+1 < =21, < --- < =21} and{—2«1 > =2« > -+ > —2K;41},
respectively. That is why it was quite natural to identify #ih particle atr — —oo with
the kth particle ar — oo: they move with equal velocities. This is compatible with the
action of wg in the A, case, see (B.2). As a result if we have, say two bound states at
t - —00,i.e.—2k; = —2xp > —2k3 = —2k4 att — oo we will have again two bound states
—26p41 = —2K, < —2K,_1 = —2K,_>.

Next we can view the solutions of CTC related to the classical s&je€, and D, as
special symmetric solutions of th&(N)-CTC, see (3.61). Then it is enough to consider only
‘half’ of the trajectories; the other half being obtained as a ‘mirror’ image. In this situation
the sets of initial and final velocities are different and the identification, goodifois not
possible for the other classical series; also quite different is the actiofaf the orthonormal
basis of the root space, see (B.2).

As we mentioned above, if we consider the whole picture witlvatajectories we will see
that no ‘creation’ or ‘decay’ of bound states takes place. In the cad®s,of and(x, ay,) = 0
(or (i, az,+1) = 0) this can be explained as follows. For> oo (r — —o0) we have a bound
state between thenth and(2n + 1)st particle which for — —oo (r — o0) transfers into a
bound state between thath and its ‘mirror’ symmetriq2n + 2)th particle. ‘Cutting’ off the
symmetric trajectories with numbera 2 2, ..., N = 4n + 2 we find the effects described
above.

Analogously we can explain the situation with a three-particle bound statesattoo
and a two-particle bound staterat> Foo. The whole picture of 4+ 2 particles will always
contain a three-particle bound state.
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4.4. Bound state regimes. Periodic and singular regimes

These regimes take placexf= 0, i.e. the set of eigenvalues = in; are purely imaginary.
Then each of the functionBy (¢) will be generically bounded. In particular, this means that
all the complex ‘particles’ (or solitons) will move together, forming a bound state with a large
number of degrees of freedom. In order to avoid degeneracies we have to requgst #at

In order to have periodic solutions we need one more restrictions gpommely

Mk = M = Skm10 (4.28)
wheres,, are integers; ify,, are rational we can always make them integers by rescaling

Example 4. Letg >~ B, = so(5). The corresponding equations have the form

&1 ) d’q>
T = —q1 1 el —q2
02 e 92 gt + ¢ (4.29)
and their periodic solutions are given by
B5(1)
=InB =In=2=2 4.30
g1 =InBy(t) 92 nBl(t) (4.30)
where
1 cos21(P () + )  €ospa(®(t) =) p2— p?
Bit) = Teg { OO0, 20D BB g
16’70([71 —p3) P1 P> P1P;
—i +O@)+p_I' _®() + p.I°
By(t) = 3! {cos{p () +p-T)  cosp-@@®)+p )} (4.310)
8npp1p2 P+ p-

wheren, = pino, pi are integers and

i i
(1) = not + (45_01 + @> =~ (@ - @) p+ = p1=E p2. (4.32)
4\ p1 p2 4\p1 p2

The period is provided by

= (4.33)
noso

wheres is the greatest common divisor pf, p,, p-andp_.

Our next remark is that in the generic case whempRe# 0 the solution (4.31) is a
regular one; them:1(¢)| and |B,(¢)| are strictly positive for alk. If, however, we choose
Rego1 = Regg, = 0 then|Bi(r)| and|B2(¢)| may vanish and the corresponding solutions
q1(t) andg,(t) become singular. Due to the periodicity|#;(¢)| and|B2(¢)| vanish at certain
pointsto; andryy, respectively, then they will also vanishegt+ kT andzg, + kt for any integer
k=0,£1,+2, ....

Example 5.Letg >~ C, = sp(4). Since the algebra®@, ~ C,, then the corresponding
solutions differ by a change of variables. Let us denote all variables af$h€ TC model by
the same letters as fdB,, adding an additional ‘bar’ to distinguish between them. Then the
C,-CTC system has the form

o g P2 s ;
— 1 o201 Z e _gled 4 g 22 4.34
dr2 dr2 (4.34)
and the solution is presented by
Ba(1)

71(1) = In B In2 7o(1) = In = lh2 4.
g1(t) =InBy(r) +1In g2(t) =In Bl(t)+2n (4.35)
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where
Bi(t) = 2Ba(t, {1, &2, o1, Po2) Ba(t) = 2Bi(t, {1, £2. do1. doz)  (4.36)
and B () are given by (4.31) and
=0+ 2=0—10
$o1 = ¢o1 t+ $o2 $02 = Po1 — P02

Of course these last two examples are analytic continuations of the solutions presented in
[11].

(4.37)

In analogy with the previous example we may assum# be purely imaginary with
nx = pxno With integer p,. Then we obtain the corresponding periodic solutions to
equation (4.34). More generally, inserting purely imaginary values;fowill result in a
periodic solution in all the above examples. These solutions may become singular if the
corresponding parametepg, are purely imaginary.

4.5. Degenerate solutions

Let us briefly discuss the degenerate solutions to the CTC. The degeneracy is possible only if
the matrixL (0) has non-trivial Jordan cells [20].

One possibility to derive the degenerate solutions is to evaluate thecimi¢ ¢, —
... — & of the solution (3.9) and (3.10) using the I'Hospital rule.

If, in particular, we have complete degeneracy (i.ealre equal to zero) the solution of
thesl/(N)-CTC can be obtained in a simpler way. SinceBl(r) are polynomials it which
must satisfy

Bo(t) = By(t) = 1 BiBy — B2 = By_1Bis1 (4.38)

we find that they depend ad — 1 constantsfy, k = 1,..., N — 1. More specificallyBy (¢)
must be a polynomial of degré€N — k) whose coefficients can be determined explicitly, for
example, by the method of undefined constants.

For example, foiv = 3 and¢; = ¢, = ¢3 = 0 we obtain

Bi(t) = =32+ fit + f» Bo(t) = =312+ fit — 2 — > (4.39)

andBs3 = 1, wheref;, k = 1, 2 are complex constants. ff is real we may use the translational
invariance of the CTC equation and chamge ¢ + f; to eliminate it; then the solution (4.39)
can be written in the form

Bit)y=—3"+F1  B()=—3"—-F  Fi=3fl+f.  (4.40)

If F is real, then the solutiong (z) have singularities for = +./2|F;]. The large time
asymptotics are given by

diadt) = —@5adt) =2INt —In2+ix Gyadt) =0 (4.41)

i.e. they do not depend on the constafitsand are complex. Analogously f&f = 4 and
{1 =10 =¢3=1¢4=0wefind

Bo(t) = Ba(t) = 1 Bi(t) = (3 + fur? + fot + f3)
Bo(t) = —&1* — L i3 — L f22 — L(fufo — 3fa)t — % (fF— 2f1f3) (4.42)
By(1) = —31% — § fur® — (3 fF — &St — 5 (2fF — 6f1f2+ 9f3)



Complex Toda chains and the simple Lie algebras: I 1001

where fi, k = 1, 2, 3 are complex constants. ff is real we may change— ¢ + f1/3 to
eliminate one of these constants; then the solution (4.42) can be written in the form
By(t) = £(t3+ Fat + F3)
Bo(t) = —%(3t" — 6Fst + FZ) (4.43)

B3(t) = —1 (13 — Fat + F3)

whereF; and F, are expressed through by

Fo=fo— % f} Fs=fs+ 22— Lfifo. (4.44)

Obviously, these solutions will be regularB () have complex roots and will develop
singularities if one (or more) of their roots are real. More specificallfhit= 0 the solution
becomes symmetric, i.&,(t) = —B3(t) and has a singularity at= 0. If in addition F3 is
real, then there are singularities also fee —&F; andt = /2Fs.

The asymptotics of these solutions are easy to calculate:

q1.as:(t) =3Int —In6 @ras:(t) =Int —IN2—in (4.45)
Gzast(t) = —Int+In2 qaast(t) = =3Int +In6 +im. (4.46)

Note that again these asymptotics: (a) do not depend on the conBtaats (b) are always
complex. The last property is a consequence of the fact that degeneracy is only possible for
the CTC.

5. Conclusions

Detailed analysis of the properties of the fundamental representations of the simple Lie algebras
allowed us to propose an effective and invariant parametrization for the solutions of the
CTC. These solutions describe much richer asymptotical regimes compared to the RTC. The
explicit solutions proposed above allow one to evaluate explicitly the large-time asymptotics
for the whole variety of dynamical regimes. The degenerate solutions also deserve further
investigation.

One final remark is that one more step is necessary for the perfection of the explicit
formulae (1.3), namely one should look for an invariant expression for the functions
w®, vy in terms ofy’ and the roots system only. Work in this direction is in
progress.
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Appendix A. The properties of V

Here we outline some of the details in deriving the expressiond far) and B, (¢). As we
mentioned in section 2 we need the explicit expressions for the mindfs of
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Let us consider the eigenvalue problem (2.3) and let us make use of the explicit tridiagonal
form of L(0). Then it is not difficult to find that the eigenvector related tas of the form

ik p1
rep2(r + Po(8))
0 = rep3(CZ + PL(C)) (A.1)

repn @Y+ Py_a(G)
where P, (g;) stands for a polynomial of degreen ¢, and

1 1 1
= 1 = = - " A.2
b =00 T 4060 T a0 a0 (A2
Next we note that the terms with (¢;) do not contribute to the minors
rr
11 ... I
and so
1 ... %k . .
V{ i . }=r,-l...r,-kpl...pkW(ll,...,lk) (A.3)
11 ... I
where
1 .. 1
2, S 2¢;,
W(i1, ..., ix) = det _ _ = ]_[ 205 — &) (A.4)
. . s>p;s,pel
)t o @)t
is the Vandermonde determinant ahek: {i1, ..., i;}. Next we have to take care of the factors

ps,» Which can be expressed througtD) sincea, (0) = % exp(—(4(0), o) /2). We also note
thatr, are determined up to a sign by the normalization condition (2.4). These remarks and the
properties of the fundamental representations of the sdrig2.19) and (2.20) are sufficient
to treat theA, series.

Let us now derive the symmetry relations (2.9) and (2.10) foBhandC, algebras. To
this end we introduce th& matrices as follows:

§= Z(_l)k+l (EkIE + ElEk) + (_1)rEr+l,r+l for B,

k=1

=> (D" (Eyx — Eg) for C,
k=1

=Y (D" (Eq+Eg) for D, (A.5)
k=1

which enter into the definition of the corresponding orthogonal and symplectic algebras. By
Ejr we depote arV x N matrix whose matrix elements are equal £)m, = &;mdr, and
asin (2.9 = N + 1 — k. Then we make use of the fact thatlifis a group element of the
corresponding group thew” = SV-1s-1 ie.
1 ...k ... N
rn=1V A.6
‘ il...k... N—l} (A8)
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where the ‘hat’ means that the indexs missing. Equations (A.3) and (A.6) readily give

w , N
Tphe = (‘W(l )Hpvrv (A7)

Taking the product of (A.7) fok = 1 tor one is able to evaIuaIE[ﬁ,V:1 i in terms ofp, and
¢y alone. Next puttingp;, N and¢, as appropriate for the serig®. and C, we derive the
expressions fow; (2.11)—(2.13).

For theD, series the matrix.(0) is of the form

by a1
a bz
br—l ar—1 ar 0
_ b 0 a
L(0) = dr1 Or r . A.8
0 @ R —— (A.8)
0 ar ar—1 _br—l
—by a1
ag —bl
For thekth eigenvector we obtain
v p1
Te P28k
rkpr71§]:72
v > | rp gt + Cln) (A.9)
repr (G = C /5
T8y Pr2
rkazrfzpzr

whereC is a coefficient to be calculated below. The symhoin (A.9) means that in the
right-hand side we have omitted terms polynomiajinvhich do not contribute to the minors
of V. Note also thaC enters into play only when we need a minor of order higher. Such
a necessity appears in two cases: when we evaluate the expression (382) fand when
we derive the symmetry relation.

From (2.3) and the explicit formula fdt(0) (A.8) we find thatp, in (A.9) are given as
follows:

k=1 g
=1 = for k=2,....,r—1
pP1 Pk Qas(o) r

(A.10)

1 =1
r=3llie  rmolloe mollie

pr+k—pr+21_[ for k=3,...,}".
o Qr— s(O)
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The determinant oV gives
2r rsPs
l=detV =2(-1'CW(....2n ]| t_ (A.11)
s=1 >°9

In analogy with (A.6) and (A.7) we obtain

(=1)72CL, W, ..., Dy, 2r) £ DsTs
P

rptry = .
Pr Do Wa....2r) 11

(A.12)

Taking again the produqf[;:1 rpr; in (A.12) and substituting the expressions fgrfrom
(A.10) we find

=] (A.13)
s=1

and, in addition, the relation (2.14).
Now it is easy to find the expression for the minor of oreler

1 ... r ] 1 ... & . T A
V{il R }_E<1+§i1---§i,>W(ll"“’lr)grhps (A-14)

needed for the derivation of, (1) (3.32).

Appendix B. Algebraic details

The action ofwg on the simple roots is well known [24, 25]:
wo(o) = —o (B.1)

wherek = r —k+1forA,;k =k, k=1,...,rfor B,, C, andDy,. Forg > Ds,:1 We have
k =k fork < 2n — 1 andwg(az,) = —ag,+1, woloz,+1) = —arg,. More specificallywg acts

on the orthonormal basig,} in the root space as follows:
wo(er) = e for A,
(B.2)
wol(er) = —ex for B,., C;, Dy,

and forDy,+1
woler) = —ex for k=1,...,2n wo(e2,+1) = €2,+1.

Next, it is well known that the weight systefi{w) is determined uniquely by the highest
weightw. The reconstruction of the weighfse I'(w) is performed by using two facts:

(i) if y € I'(w) thenw(y) € I'(w) wherew is any element of the Weyl group; besideand
w(y) have equal multiplicities;
(i) if @ > Ois a positive root and
2(a, w) _

>0 (B.3)

(0, @)

thenw —sa e N'(w) foralls =1, ..., p.
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In particular, ifo = o] ande = Y |_,; mya, we see that (B.3) is fulfilled only if
my = p > 0. Thus we find that generically (i.e. far < r) along withw;, weights in
I'(wy) are also

+ +
V1= W, — Q V2 = w, — (ap_1 + o) etc.

Using the sorting condition (4.2) we easily find that

yel(w)\wf

min  [~(&, of —y)] = min [st(—;?, as)} = —(%, ) (B.4)
s=1

which proves the estimations in equations (4.3).

The same method can also be applied when one of the roots satisfigs) = 0. As
a consequence of this condition at least two terms;it) may have the same asymptotic
behaviour.

Here we will first describe the sets of rodt () (see (4.14)) and then will also outline the
proof of (4.16). Obviously ifk, «,,) = 0onlyG;, (k) will be non-empty and will coincide with
{an} and thereford, . (w))\{w}}, while T, +(w,)\{@},, ,, — a} wherea = a, + 3 ma;.
The minimum of-2(k, w,, — «) will be achieved if we limit ourselves with rootsof height
2. Now it remains to take into account thaf + «; is a root if and only if(«,,, @y) < 0. The
corresponding result far— —oc is obtained by acting witlwg. This proves (4.16).

We finish this appendix by describing the sets of rc(é);@?) for (¢, a,y) = (¥, a,y) = 0.
First, if (&, ap) = 0thenG;, (k) = {an}, G;(/'c') = {a,} and all the other&; (k) = {#}.

If, however, (o, @p) < O the situation becomes more interesting. In the generic case
(o, o) = —1 we find

G:—n(/z): {am, Olm"'o‘p} G;(I_é):{aps am"'ap}-

The only two exceptions of this rule for the classical seriesmarer — 1, p = r forg ~ B,
andC,. Then we have

G:_]_(’_é) ={o 1,01 to, 0 1+ 20‘)} G:—(I_é) ={ar, a1t o1+ 20‘)}
forg ~ B, and

+ - + -
G,_1(k) ={a,_1, a1+, 20,1 + 1} G, k) ={ar, ar_1 +a,, 20,1 + ;)

for g ~ C,. These last relations allow us to calculate the asymptoti@fgg‘for all possible
values ofk for I,s = {m, p}. Then it is not difficult to insert them in (4.6) and evaluate the
asymptotic behaviour of alj; (). Several examples of such calculations were presented in
section 4 above.
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